[1] T. Chen, T. He. Higgs Boson discovery with boosted trees, 69-80(2015).
[2] J. Jumper et al. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589(2021).
[3] The Nobel Prize in Physics 2024.
[4] The Nobel Prize in Physics 2024.
[5] J. J. Hopfield. Electron transfer between biological molecules by thermally activated tunneling. Proc. Natl. Acad. Sci., 71, 3640-3644(1974).
[6] J. J. Hopfield. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci., 71, 4135-4139(1974).
[7] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.. Proc. Natl. Acad. Sci., 79, 2554-2558(1982).
[8] J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci., 81, 3088-3092(1984).
[9] J. J. Hopfield, D. W. Tank. Neural’ computation of decisions in optimization problems. Biol. Cybern., 52, 141-152(1985).
[10] J. J. Hopfield, D. W. Tank. Computing with neural circuits: a model. Science, 233, 625-633(1986).
[11] S. E. Fahlman, G. E. Hinton, T. J. Sejnowski. Massively parallel architectures for AI: Netl, Thistle, and Boltzmann machines, 109-113(1983).
[12] D. H. Ackley, G. E. Hinton, T. J. Sejnowski. A learning algorithm for Boltzmann machines. Cogn. Sci., 9, 147-169(1985).
[13] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-propagating errors. Nature, 323, 533-536(1986).
[14] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Comput., 14, 1771-1800(2002).
[15] G. E. Hinton, S. Osindero, Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554(2006).
[16] G. E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313, 504-507(2006).
[17] J. J. Hopfield. Hopfield network. Scholarpedia, 2(2007).
[18] D. Krotov, J. J. Hopfield. Dense associative memory for pattern recognition. Adv. Neural Inf. Process. Sys., 29(2016).
[19] J. C. Schön. Energy landscapes—past, present, and future: a perspective. J. Chem. Phys., 161, 050901(2024).
[20] G. E. Hinton, G. Montavon, G. B. Orr, K.-R. Müller. A practical guide to training restricted Boltzmann machines. Neural Networks: Tricks of the Trade, 599-619(2012).
[21] H. J. Kelley. Gradient theory of optimal flight paths. ARS J., 30, 947-954(1960).
[22] S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numer. Math., 16, 146-160(1976).
[23] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 84-90(2017).
[24] N. Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958(2014).
[25] C. Bény. Deep learning and the renormalization group. arXiv 1301.3124(2013).
[26] S. C. Kak. Quantum neural computing. Adv. Imaging Electron Phys., 94, 259-313(1995).
[27] J. Ho, A. Jain, P. Abbeel. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Sys., 33, 6840-6851(2020).
[28] R. Brown. XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag., 4, 161-173(2009).
[29] A. Einstein. Investigations on the Theory of the Brownian Movement(1956).
[30] D. Mengu et al. At the intersection of optics and deep learning: statistical inference, computing, and inverse design. Adv. Opt. Photonics, 14, 209-290(2022).
[31] F. Vernuccio et al. Artificial intelligence in classical and quantum photonics. Laser Photonics Rev., 16, 2100399(2022).
[32] P. Freire et al. Artificial neural networks for photonic applications—from algorithms to implementation: tutorial. Adv. Opt. Photonics, 15, 739-834(2023).
[33] K. de Haan et al. Deep-learning-based image reconstruction and enhancement in optical microscopy. Proc. IEEE, 108, 30-50(2020).
[34] Y. Rivenson et al. Deep learning microscopy. Optica, 4, 1437-1443(2017).
[35] Y. Wu et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat. Methods, 16, 1323-1331(2019).
[36] H. Wang et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods, 16, 103-110(2019).
[37] H. Pinkard et al. Deep learning for single-shot autofocus microscopy. Optica, 6, 794-797(2019).
[38] E. Nehme et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods, 17, 734-740(2020).
[39] L. Möckl, A. R. Roy, W. E. Moerner. Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited]. Biomed. Opt. Express, 11, 1633-1661(2020).
[40] B. Midtvedt et al. Quantitative digital microscopy with deep learning. Appl. Phys. Rev., 8, 011310(2021).
[41] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141-17141(2018).
[42] Y. Wu et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 5, 704-710(2018).
[43] Y. Rivenson, Y. Wu, A. Ozcan. Deep learning in holography and coherent imaging. Light Sci. Appl., 8, 85(2019).
[44] Z. Ren, Z. Xu, E. Y. M. Lam. “End-to-end deep learning framework for digital holographic reconstruction. Adv. Photonics, 1, 016004(2019).
[45] T. Liu et al. Deep learning-based holographic polarization microscopy. ACS Photonics, 7, 3023-3034(2020).
[46] J. Di et al. Quantitative phase imaging using deep learning-based holographic microscope. Front. Phys., 9(2021).
[47] Y. Wu et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light Sci. Appl., 8, 25(2019).
[48] Q. Yang et al. MRI cross-modality image-to-image translation. Sci. Rep., 10, 3753(2020).
[49] B. Bai et al. Deep learning-enabled virtual histological staining of biological samples. Light Sci. Appl., 12, 57(2023).
[50] W. Xiong et al. A deep cross-modality hashing network for SAR and optical remote sensing images retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 5284-5296(2020).
[51] Y. Rivenson et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng., 3, 466-477(2019).
[52] C. L. Cooke et al. Physics-enhanced machine learning for virtual fluorescence microscopy, 3803-3813(2021).
[53] L. Latonen et al. Virtual staining for histology by deep learning. Trends Biotechnol., 42, 1177-1191(2024).
[54] Z. Ballard et al. Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell., 3, 556-565(2021).
[55] Y. Liu, L. Wu. Geological disaster recognition on optical remote sensing images using deep learning. Proc. Comput. Sci., 91, 566-575(2016).
[56] Y. Zhang et al. Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates. J. Manuf. Syst., 51, 87-94(2019).
[57] H.-A. Joung et al. Point-of-care serodiagnostic test for early-stage Lyme disease using a multiplexed paper-based immunoassay and machine learning. ACS Nano, 14, 229-240(2020).
[58] Z. Göröcs et al. Label-free detection of Giardia lamblia cysts using a deep learning-enabled portable imaging flow cytometer. Lab. Chip, 20, 4404-4412(2020).
[59] L. V. Nguyen et al. Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference. Photonics Res., 9, B109-B118(2021).
[60] Z. Wang et al. Deep learning based label-free small extracellular vesicles analyzer with light-sheet illumination differentiates normal and cancer liver cells. Sens. Actuators B Chem., 347, 130612(2021).
[61] P. D. Hernández, J. A. Ramírez, M. A. Soto. Deep-learning-based earthquake detection for fiber-optic distributed acoustic sensing. J. Light. Technol., 40, 2639-2650(2022).
[62] Y. Luo et al. Virtual impactor-based label-free pollen detection using holography and deep learning. ACS Sens., 7, 3885-3894(2022).
[63] G.-R. Han et al. Deep learning-enhanced paper-based vertical flow assay for high-sensitivity troponin detection using nanoparticle amplification. ACS Nano, 18, 27933-27948(2024).
[64] Z. S. Ballard et al. Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors. npj Digit. Med., 3, 1-8(2020).
[65] A. Goncharov et al. Deep learning-enabled multiplexed point-of-care sensor using a paper-based fluorescence vertical flow assay. Small, 19, 2300617(2023).
[66] M. Eryilmaz et al. A paper-based multiplexed serological test to monitor immunity against SARS-COV-2 Using machine learning. ACS Nano, 18, 16819-16831(2024).
[67] R. Ghosh et al. Rapid single-tier serodiagnosis of Lyme disease. Nat. Commun., 15, 7124(2024).
[68] A. Goncharov et al. Insertable glucose sensor using a compact and cost-effective phosphorescence lifetime imager and machine learning. ACS Nano, 18, 23365-23379(2024).
[69] U. M. N. Jayawickrema et al. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: a review. Measurement, 199, 111543(2022).
[70] C. Zuo et al. Deep learning in optical metrology: a review. Light Sci. Appl., 11, 39(2022).
[71] N. H. Al-Ashwal et al. Deep learning for optical sensor applications: a review. Sensors, 23, 6486(2023).
[72] S. Yuan et al. Geometric deep optical sensing. Science, 379, eade1220(2023).
[73] Y. Zhuo, J. Brgoch. Opportunities for next-generation luminescent materials through artificial intelligence. J. Phys. Chem. Lett., 12, 764-772(2021).
[74] N. T. Hung et al. Universal ensemble-embedding graph neural network for direct prediction of optical spectra from crystal structures. Adv. Mater., 2409175(2024).
[75] J. M. Gregoire, L. Zhou, J. A. Haber. Combinatorial synthesis for AI-driven materials discovery. Nat. Synth., 2, 493-504(2023).
[76] L. Li et al. Intelligent metasurfaces: control, communication and computing. eLight, 2, 7(2022).
[77] P. R. Wiecha et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res., 9, B182-B200(2021).
[78] D. Liu et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics, 5, 1365-1369(2018).
[79] S. So et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).
[80] S. Mao et al. Inverse design for silicon photonics: from iterative optimization algorithms to deep neural networks. Appl. Sci., 11, 3822(2021).
[81] A. Ueno, J. Hu, S. An. AI for optical metasurface. npj Nanophotonics, 1, 36(2024).
[82] J. Li et al. Unidirectional imaging using deep learning–designed materials. Sci. Adv., 9, eadg1505(2023).
[83] C. Qian et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).
[84] W. Ma et al. Deep learning empowering design for selective solar absorber. Nanophotonics, 12, 3589-3601(2023).
[85] J. Park et al. Free-form optimization of nanophotonic devices: from classical methods to deep learning. Nanophotonics, 11, 1809-1845(2022).
[86] T. Gahlmann, P. Tassin. Deep neural networks for the prediction of the optical properties and the free-form inverse design of metamaterials. Phys. Rev. B, 106, 085408(2022).
[87] J. Hu et al. Diffractive optical computing in free space. Nat. Commun., 15, 1525(2024).
[88] J. Shalf. The future of computing beyond Moore’s Law. Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 378, 20190061(2020).
[89] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).
[90] L. Huang et al. Self-supervised learning of hologram reconstruction using physics consistency. Nat. Mach. Intell., 5, 895-907(2023).
[91] K. M. Stiefel, J. S. Coggan. The energy challenges of artificial superintelligence. Front. Artif. Intell., 6, 1240653(2023).
[92] “AI’s carbon footprint is bigger than you think,” MIT Technology Review, (accessed 12 October 2024).
[93] A. Gholami et al. AI and memory wall. IEEE Micro, 44, 33-39(2024).
[94] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).
[95] R. Hamerly. The future of deep learning is photonic: reducing the energy needs of neural networks might require computing with light. IEEE Spectr., 58, 30-47(2021).
[96] P. L. McMahon. The physics of optical computing. Nat. Rev. Phys., 5, 717-734(2023).
[97] “Programmed diffraction for intelligent imaging and sensing,” (accessed 13 October 2024).
[98] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).
[99] A. N. Tait et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017).
[100] R. Hamerly et al. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).
[101] H. Zhang et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).
[102] X. Xu et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).
[103] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).
[104] B. Dong et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photonics, 17, 1080-1088(2023).
[105] O. Kulce et al. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci. Appl., 10, 196(2021).
[106] M. S. Sakib Rahman, A. Ozcan. Integration of programmable diffraction with digital neural networks. ACS Photonics, 11, 2906-2922(2024).
[107] J. Li et al. “Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photonics, 1, 046001(2019).
[108] D. Mengu et al. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 3700114(2020).
[109] J. Li et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv., 7, eabd7690(2021).
[110] B. Bai et al. Information-hiding cameras: optical concealment of object information into ordinary images. Sci. Adv., 10, eadn9420(2024).
[111] Ç. Işıl et al. Super-resolution image display using diffractive decoders. Sci. Adv., 8, eadd3433(2022).
[112] M. S. S. Rahman et al. Learning diffractive optical communication around arbitrary opaque occlusions. Nat. Commun., 14, 6830(2023).
[113] Y. Li et al. Optical information transfer through random unknown diffusers using electronic encoding and diffractive decoding. Adv. Photonics, 5, 046009(2023).