• PhotoniX
  • Vol. 5, Issue 1, 3 (2024)
Haiyao Yang1, Haoran Mo1, Jianzhi Zhang1, Lihong Hong1, and Zhi-Yuan Li1,2,*
Author Affiliations
  • 1School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • 2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.1186/s43074-024-00119-6 Cite this Article
    Haiyao Yang, Haoran Mo, Jianzhi Zhang, Lihong Hong, Zhi-Yuan Li. Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement[J]. PhotoniX, 2024, 5(1): 3 Copy Citation Text show less
    References

    [1] Ferrari AC. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235.

    [2] Kneipp K, Kneipp H, Itzkan I, Dasari RR. Feld. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev. 1999;99:2957.

    [3] Andrews DH. The relation between the raman spectra and the structure of organic molecules. Phys Rev. 1930;36: 544.

    [4] Ramaswamy C. Raman effect in diamond. Nature. 1930;125:704.

    [5] Kerker M, Wang DS, Chew H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl Opt. 1980;19: 3373.

    [6] Long L, Ju W, Yang HY, Li Z. Dimensional design for surface-enhanced raman spectroscopy. ACS Mater Au. 2022;2:552.

    [7] Li ZY. Mesoscopic and microscopic strategies for engineering plasmon-enhanced raman scattering. Adv Opt Mater. 2018;6(16):1701097.

    [8] Qiu Y, Kuang C, Liu X. Tang. Single-molecule surface-enhanced Raman Spectroscopy. Sens (Basel). 2022;22:4889.

    [9] Yu Y, Xiao TH, Wu YZ, et al. Roadmap for single-molecule surface-enhanced raman spectroscopy. Adv Photonics. 2020;2:014002.

    [10] de Virgilio M, Weninger H, Ivessa NE. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem. 1998;273:9734.

    [11] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667.

    [12] Nie S. Emory. Probing single molecules and single nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997;275:1102.

    [13] Xu HX, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999;83:4357.

    [14] Xia C, Zhang D, Li H, et al. Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Res. 2021;15:694.

    [15] Shingaya Y, Takaki H, Kobayashi N, Aono M, Nakayama T. Single-molecule detection with enhanced Raman scattering of tungsten oxide nanostructure. Nanoscale. 2022;14:14552.

    [16] Jaculbia RB, Imada H, Miwa K, et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat Nanotechnol. 2020;15:105.

    [17] Zong C, Premasiri R, Lin H, et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat Commun. 2019;10:5318.

    [18] Sugano K, Aiba K, Ikegami K, Isono Y. Single-molecule surface-enhanced Raman spectroscopy of 4,4 ‘-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers. Jpn J Appl Phys. 2017;56:06gk01.

    [19] Zheng Y, Soeriyadi AH, Rosa L, et al. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat Commun. 2015;6:8797.

    [20] Darby BL, Etchegoin PG, Le Ru EC. Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation. Phys Chem Chem Phys. 2014;16:23895.

    [21] Li L, Hutter T, Steiner U, Mahajan S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst. 2013;138:4574.

    [22] McGuinness CD, Macmillan AM, Karolin J, et al. Single molecule level detection of allophycocyanin by surface enhanced resonance Raman scattering. Analyst. 2007;132:633.

    [23] Zhou ZH, Wang GY, Xu ZZ. Single-molecule detection in a liquid by surface-enhanced resonance Raman scattering. Appl Phys Lett. 2006;88:034104.

    [24] Maher RC, Dalley M, Le Ru EC, et al. Physics of single molecule fluctuations in surface enhanced Raman spectroscopy active liquids. J Chem Phys. 2004;121:8901.

    [25] Lin CL, Liang SS, Peng YS, et al. Visualized SERS Imaging of single molecule by Ag/Black phosphorus nanosheets. Nano-Micro Lett. 2022;14:75.

    [26] Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta. 2020;1097:1.

    [27] Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and Future of Surface-enhanced Raman Scattering. ACS Nano. 2020;14:28.

    [28] Zrimsek AB, Chiang N, Mattei M, et al. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem Rev. 2017;117:7583.

    [29] Kleinman SL, Sharma B, Blaber MG, et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc. 2013;135:301.

    [30] Wang X, Huang SC, Hu S, Yan S, Ren B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Reviews Phys. 2020;2:253.

    [31] Ling X, Fang W, Lee YH, et al. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett. 2014;14:3033.

    [32] Beams R, Gustavo Cancado L, Novotny L. Raman characterization of defects and dopants in graphene. J Phys Condens Matter. 2015;27: 083002.

    [33] Neumann C, Reichardt S, Venezuela P, et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat Commun. 2015;6:8429.

    [34] Li JF, Tian XD, Li SB, et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Protoc. 2013;8:52.

    [35] Wei RB, Kuang PY, Cheng H, et al. Plasmon-enhanced Photoelectrochemical Water Splitting on Gold Nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain Chem Eng. 2017;5:4249.

    [36] Yin Z, Wang Y, Song C, et al. Hybrid Au-Ag nanostructures for enhanced Plasmon-Driven Catalytic Selective Hydrogenation through visible light irradiation and surface-enhanced Raman Scattering. J Am Chem Soc. 2018;140:864.

    [37] Pettinger B, Schambach P, Carlos J Villagómez, et al. Tip-Enhanced Raman Spectroscopy: Near-fields acting on a few molecules. Annu Rev Phys Chem. 2012;63(1):379–99.

    [38] Pienpinijtham P, Kitahama Y, Ozaki Y. Electric field analysis, polarization, excitation wavelength dependence, and novel applications of tip-enhanced Raman scattering. J Raman Spectrosc. 2021;52:1997.

    [39] Zhang KF, Taniguchi S, Saeki T, et al. Simple cleaning and regeneration of tip-enhanced Raman spectroscopy probe with UV sources. J Raman Spectrosc. 2022;53:2023.

    [40] Xiao TH, Cheng Z, Luo Z, et al. All-dielectric chiral-field-enhanced Raman optical activity. Nat Commun. 2021;12:3062.

    [41] Berkdemir A, Gutiérrez HR, Botello-Méndez AR, et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci Rep. 2013;3:1755.

    [42] Shi W, Lin ML, Tan QH, et al. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2d Materials. 2016;3:025016.

    [43] Zhang N, Tong LM, Zhang J. Graphene-based enhanced Raman scattering toward Analytical Applications. Chem Mater. 2016;28:6426.

    [44] Fukui K, Yonezawa T, Shingu H. A molecular Orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys. 1952;20:722.

    [45] Yin Y, Miao P, Zhang Y, et al. Significantly increased Raman Enhancement on MoX2 (X = S, Se) Monolayers upon Phase Transition. Adv Funct Mater. 2017;27(16):1606694.

    [46] Xu H, Xie L, Zhang H, Zhang J. Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS Nano. 2011;5:5338.

    [47] Ming X. A Review on applications of two-dimensional materials in surface-enhanced Raman Spectroscopy. Int J Spectrosc. 2018;4861472:9.

    [48] Shutov AD, Yi Z, Wang J, et al. Giant Chemical Surface Enhancement of Coherent Raman scattering on MoS2. ACS Photonics. 2018;5:4960.

    [49] He R, Lai H, Wang S, et al. Few-layered vdW MoO3 for sensitive, uniform and stable SERS applications. Appl Surf Sci. 2020;507: 145116.

    [50] Wu Z, Zeng P, Zhao W, et al. Synthesis of single- and few-Layer Nitrogen-doped Graphene and Layer-Dependent Surface-enhanced Raman Scattering properties. J Phys Chem C. 2021;125:17831.

    [51] Wang Z, Rothberg LJ. Origins of blinking in single-molecule Raman spectroscopy. J Phys Chem B. 2005;109:3387.

    [52] Saini GS, Kaur S, Tripathi SK, et al. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. Spectrochim Acta Mol Biomol Spectrosc. 2005;61:653.

    [53] Wang HL, You EM, Panneerselvam R, Ding SY. Tian. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light Sci Appl. 2021;10:161.

    [54] Dong X, Yang B, Zhu R, et al. Tip-induced bond weakening, tilting, and hopping of a single CO molecule on Cu(100). Light Adv Manuf. 2022;3:729–38.

    Haiyao Yang, Haoran Mo, Jianzhi Zhang, Lihong Hong, Zhi-Yuan Li. Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement[J]. PhotoniX, 2024, 5(1): 3
    Download Citation