• Journal of Atmospheric and Environmental Optics
  • Vol. 16, Issue 4, 299 (2021)
Zhenping YIN1、2、*, Fan YI1、2, Wei WANG1、2, Yun HE1、2, Fuchao LIU1、2, Yunpeng ZHANG1、2, and Changming YU1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2021.04.002 Cite this Article
    YIN Zhenping, YI Fan, WANG Wei, HE Yun, LIU Fuchao, ZHANG Yunpeng, YU Changming. Investigation of Entrainment of Transported Dust into Local Planetary Boundary Layer with Polarization Lidar[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 299 Copy Citation Text show less
    References

    [1] Stocker T F. Climate change 2013: The physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[OL]. 2014. https://www.ipcc.ch/report/ar5/wg1/.

    [2] Andreae M O. Climatic Effects of Changing Atmospheric Aerosol Levels[M]. World Survey of Climatology. Amsterdam: Elsevier, 1995: 347-398.

    [3] Zender C S, Miller R L R L, Tegen I. Quantifying mineral dust mass budgets: Terminology, constraints, and current estimates[J]. Eos, Transactions American Geophysical Union, 2004, 85(48): 509-512.

    [4] Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D23): 28041-28047.

    [5] Johnson B T, Brooks M E, Walters D, et al. Assessment of the Met Office dust forecast model using observations from the GERBILS campaign[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(658): 1131-1148.

    [6] Mamouri R E, Ansmann A. Fine and coarse dust separation with polarization lidar[J]. Atmospheric Measurement Techniques, 2014, 7(11): 3717-3735.

    [7] He Y, Yi F. Dust aerosols detected using a ground-based polarization lidar and CALIPSO over Wuhan (30.5° N, 114.4° E), China[J]. Advances in Meteorology, 2015, 2015: 1-18.

    [8] Sun J M, Zhang M Y, Liu T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relations to source area and climate[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D10): 10325-10333.

    [9] Liu F C, Yi F. Lidar-measured atmospheric N2 vibrational-rotational Raman spectra and consequent temperature retrieval[J]. Optics Express, 2014, 22(23): 27833-27844.

    [10] Liu F, Yi F. Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere[J]. Applied Optics, 2013, 52(28): 6884-6895.

    [11] Weng M, Yi F, Liu F C, et al. Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles[J]. Optics Express, 2018, 26(21): 27555-27571.

    [12] Kong W, Yi F. Convective boundary layer evolution from lidar backscatter and its relationship with surface aerosol concentration at a location of a central China megacity[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(15): 7928-7940.

    [13] Hayman M, Thayer J P. General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices[J]. Journal of the Optical Society of America A, 2012, 29(4): 400-409.

    [14] Zhao S P, Yu Y, Yin D Y, et al. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center[J]. Environment International, 2016, 86: 92-106.

    [15] Haarig M, Ansmann A, Gasteiger J, et al. Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE[J]. Atmospheric Chemistry and Physics, 2017, 17(23): 14199-14217.

    [16] Ansmann A, Mamouri R E, Hofer J, et al. Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis[J]. Atmospheric Measurement Techniques, 2019, 12(9): 4849-4865.

    [17] Hu Q Y, Wang H F, Goloub P, et al. The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 13817-13834.

    [18] Hofer J, Althausen D, Abdullaev S F, et al. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: Case studies[J]. Atmospheric Chemistry and Physics, 2017, 17(23): 14559-14577.

    [19] Shimizu A, Sugimoto N, Matsui I, et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D19): D19S17.

    [20] Müller D, Ansmann A, Mattis I, et al. Aerosol-type-dependent lidar ratios observed with Raman lidar[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D16): D16202.

    [21] Tian Y, Pan X L, Nishizawa T, et al. Variability of depolarization of aerosol particles in the megacity of Beijing: Implications for the interaction between anthropogenic pollutants and mineral dust particles[J]. Atmospheric Chemistry and Physics, 2018, 18(24): 18203-18217.

    [22] Pan X L, Uno I, Wang Z, et al. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution[J]. Scientific Reports, 2017, 7(1): 335.

    CLP Journals

    [1] [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65

    YIN Zhenping, YI Fan, WANG Wei, HE Yun, LIU Fuchao, ZHANG Yunpeng, YU Changming. Investigation of Entrainment of Transported Dust into Local Planetary Boundary Layer with Polarization Lidar[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 299
    Download Citation