• Spacecraft Recovery & Remote Sensing
  • Vol. 45, Issue 2, 134 (2024)
Yu ZHANG, Lei YU, Mingguang SHAN*, Liying ZHENG, and Xuhui LIANG
Author Affiliations
  • Harbin Engineering University, Harbin 150001, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2024.02.013 Cite this Article
    Yu ZHANG, Lei YU, Mingguang SHAN, Liying ZHENG, Xuhui LIANG. SAR Ship Detection Algorithm Based on Long-Short Path Fusion and Data Balance[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 134 Copy Citation Text show less
    References

    [1] CRUZ H, VESTIAS M, MONTEIRO J, et al. A Review of SyntheticAperture Radar Image Fmation Algithms Implementations: A Computational Perspective[J]. Remote Sensing, 2022, 14(5): 1258. DOI: https:doi.g10.3390rs14051258.

    [2] OTTINGER M, KUENZER C. Spacebne LB Synthetic Aperture Radar Data f Geoscientific Analyses in Coastal L Applications: A Review[J]. Remote Sensing, 2020, 12(14): 2228. DOI: https:doi.g10.3390rs12142228.

    [3] A E GREENBERG, A WUTOH, L BOWLEG et al. Centers for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI): Developing Career Pathways for Early-Stage Scholars from Racial and Ethnic Groups Underrepresented in HIV Science and Medicine. Journal of Acquired Immune Deficiency Syndromes, 94, S5-S12(2023).

    [4] J AI, X YANG, J SONG et al. An Adaptively Truncated Clutter-Statistics-Based Two-Parameter CFAR Detector in SAR Imagery. IEEE Journal of Oceanic Engineering, 43, 267-279(2017).

    [5] L KONG, B WANG, G CUI et al. Performance Prediction of OS-CFAR for Generalized Swerling-Chi Fluctuating Targets. IEEE Transactions on Aerospace and Electronic Systems, 52, 492-500(2016).

    [6] SCHWEGMANN C P, KLEYNHANS W, SALMON B P, et al. A CACFAR Localized Wavelet Ship Detect f Sentinel1 Imagery[C]2015 IEEE International Geoscience Remote Sensing Symposium (IGARSS), July 2631, 2015, Milan, Italy. IEEE, 2015: 37073710. DOI: 10.1109IGARSS.2015.7326628.

    [9] J WANG, W LI, Y GAO et al. Hyperspectral and SAR Image Classification via Multiscale Interactive Fusion Network. IEEE Transactions on Neural Networks and Learning Systems, 34, 10823-10837(2022).

    [10] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature Pyra wks f Object Detection[C]2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), July 2126, 2017. Honolulu, HI, USA. IEEE, 2017: 21172125. DOI: 10.1109CVPR.2017.106.

    [11] DING X, ZHANG X, MA N, et al. RepVGG: Making VGGstyle Convs Great Again[C]2021 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), June 2025, 2021, Nashville, TN, USA. IEEE, 2021: 1373313742. DOI: 10.1109CVPR46437.2021.01352.

    [12] SLER M, HOWARD A, ZHU M, et al. Mobilev2: Inverted Residuals Linear Bottlenecks[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition, June 1823, 2018, Salt Lake City, UT, USA. IEEE, 2018: 45104520. DOI: 10.1109CVPR.2018.00474.

    [13] HE K, ZHANG X, REN S, et al. Deep Residual Learning f Image Recognition[C]2016 IEEE Conference on Computer Vision Pattern Recognition(CVPR), June 2730, 2016, Las Vegas, NV, USA. IEEE, 2016: 770778. DOI: 10.1109CVPR.2016.90.

    [14] H HE, Y LIN, F CHEN et al. Inshore Ship Detection in Remote Sensing Images via Weighted Pose Voting. IEEE Transactions on Geoscience and Remote Sensing, 55, 3091-3107(2017).

    [15] SHOETEN C, KHOSHGOFTAAR T M. A Survey on Image Data Augmentation f Deep Learning[J]. Journal of Big Data, 2019, 6(1): 148. DOI: https:doi.g10.108001431160600746456.

    [16] LIU Y, JIN L. Deep Matching Pri wk: Toward Tighter Multiiented Text Detection[C]2017 IEEE Conference on Computer Vision Pattern Recognition(CVPR), July 2126, 2017, Honolulu, HI, USA. IEEE, 2017: 19621969. DOI: 10.1109CVPR.2017.368.

    [18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss f Dense Object Detection[C]IEEE Transactions on Pattern Analysis Machine Intelligence, February 1, 2020, Venice, Italy. IEEE, 2017: 29802988. DOI: 10.1109TPAMI.2018.2858826.

    [19] ZHANG T, ZHANG X, LI J, et al. SAR Ship Detection Dataset (SSDD): Official Release Comprehensive Data Analysis[J]. Remote Sensing, 2021, 13(18): 3690. DOI: https:doi.g10.3390rs13183690.

    [20] WANG Y, WANG C, ZHANG H, et al. Automatic Ship Detection Based on Retina Using Multiresolution Gaofen3 Imagery[J]. Remote Sensing, 2019, 11(5): 531. DOI: https:doi.g10.3390rs11050531.

    [21] S REN, K HE, R GIRSHICK et al. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [22] WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv7: Trainable Bagoffreebies Sets New Stateoftheart f Realtime Object Detects[C]2023 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), August 22, 2023, Vancouver Canada. IEEE, 2023: 74647475. DOI: 10.1109CVPR52729.2023.00721.

    [23] F HE, T LIU, D TAO. Why Resnet Works? Residuals Generalize. IEEE Transactions on Neural Networks and Learning Systems, 31, 5349-5362(2020).

    Yu ZHANG, Lei YU, Mingguang SHAN, Liying ZHENG, Xuhui LIANG. SAR Ship Detection Algorithm Based on Long-Short Path Fusion and Data Balance[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 134
    Download Citation