[4] Li S P, Zhong J G. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography [J]. Biomedical Optics Express, 2012, 3(12): 31903202.
[5] Rafael A E, Nobuaki M, Michio M, et al. Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state2H nuclear magnetic resonance [J]. Biochemistry, 2013, 52(14): 24102418.
[6] Homola J, Lu H B, Yee S S. Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer [J]. Electronics Letters, 1999, 35(13): 11051106.
[7] Bryce P N, Timothy E G, Mark R L, et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays [J]. Analytical Chemistry, 2001, 73(1): 17.
[8] Yuk J S, Kim H S, Jung J W, et al. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging [J]. Biosensors and Bioelectronics, 2006, 21(8): 15211528.
[9] Homola J, Yee S S, Ganglitz G. Surface plasmon resonance sensors: review [J]. Sensors and Actuators B Chemical, 1999, 54(12): 315.
[11] Islam M, Bhowmik B K, Dhriti K M, et al. Thin film sensing in a planar terahertz meta-waveguide [J]. Journal of Optics, 2022, 24(6): 064016.
[12] Islam M, Chowdhury D R, Ahmad A, et al. Terahertz plasmonic waveguide based thin film sensor [J]. Journal of Lightwave Technology, 2017, 35(23): 52155221.
[14] Bhat A, Gwozdz P V, Seshadri A, et al. Tank circuit for ultrafast single-particle detection in micropores [J]. Physical Review Letters, 2018, 121(7): 078102.
[15] Rao R S. Microwave Engineering [M]. Delhi: PHI Learning Pvt Ltd, 2015.
[16] Ellison W J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 025 THz and the temperature range 0100 ℃ [J]. Journal of Physical and Chemical Reference Data, 2007, 36(1): 118.