[1] WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: Current status and future perspectives[J]. Chem Rev, 2021, 121(10): 6124-6172.
[2] ZHOU X F, XUE G L, LUO H, et al. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics[J]. Prog Mater Sci, 2021, 122: 100836.
[3] LIU Runlin, LI Changjiao, WANG Jian, et al. J Chin Ceram Soc, 2023, 51(2): 367-372.
[4] SHEN Z H, LIU H X, SHEN Y, et al. Machine learning in energy storage materials[J]. Interdiscip Mater, 2022, 1(2): 175-195.
[5] LI D, ZENG X, LI Z, et al. Progress and perspectives in dielectric energy storage ceramics[J]. J Adv Ceram, 2021, 10(4): 675-703.
[6] LI Xiaowei. Structure, dielectric and energy storage properties of sodium bismuth titanate-based relaxor ferroelectric ceramics[D]. Beijing: University of Science and Technology Beijing, 2022.
[7] LI D X, MENG X Y, ZHOU E H, et al. Ultrahigh energy density of antiferroelectric PbZrO3-based films at low electric field[J]. Adv Funct Materials, 2023, 33(44): 2302995.
[8] JAYAKRISHNAN A R, SILVA J P B, KAMAKSHI K, et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors?[J]. Prog Mater Sci, 2023, 132: 101046.
[9] DU Jinhua, LI Yong, SUN Ningning, et al. J Chin Ceram Soc, 2022, 50(3): 608-624.
[10] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.
[11] WANG Z P, KANG R R, LIU W Y, et al. (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with medium permittivity featuring enhanced energy-storage density and excellent thermal stability[J]. Chem Eng J, 2022, 427: 131989.
[12] YAN C, LIU X F, YUE C Y, et al. Outstanding enhanced breakdown field strength and energy storage properties in Na0.5Bi0.5TiO3-based thin film by the aging process[J]. J Power Sources, 2021, 508: 230331.
[13] ZHANG Y L, LI W L, QIAO Y L, et al. 0.6ST-0.4NBT thin film with low level Mn doping as a lead-free ferroelectric capacitor with high energy storage performance[J]. Appl Phys Lett, 2018, 112(9): 093902.
[14] YANG C H, QIAN J, HAN Y J, et al. Design of an all-inorganic flexible Na0.5Bi0.5TiO3-based film capacitor with giant and stable energy storage performance[J]. J Mater Chem A, 2019, 7(39): 22366-22376.
[15] ZHU X P, SHI P, KANG R R, et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning[J]. Chem Eng J, 2021, 420: 129808.
[16] WANG H, HAO H, LI D X, et al. Synergistic effect enhances energy storage properties of BNT-based relaxor ferroelectric thin films[J]. Ceram Int, 2023, 49(8): 12443-12451.
[17] QIAO X S, WU D, ZHANG F D, et al. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics[J]. J Eur Ceram Soc, 2019, 39(15): 4778-4784.
[18] WANG J, QIU G X, QIAN H, et al. Optimized energy-storage performance in Mn-doped Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 lead-free dielectric thin films[J]. Appl Surf Sci, 2022, 571: 151274.
[19] XU L X, WU S H, ZHU K, et al. Enhanced piezoelectricity and reduced leakage current of a novel (1?x)Bi0.5Na0.5TiO3-x(Sr0.7Bi0.2□0.1)TiO3 thin film[J]. Inorg Chem Front, 2021, 8(3): 700-710.
[20] WANG Q, XIE B, ZHENG Q Y, et al. Bi0.5Na0.5TiO3-based relaxor-ferroelectric ceramics for low-electric-field dielectric energy storage via bidirectional optimization strategy[J]. Chem Eng J, 2023, 452: 139422.
[21] KANG R R, WANG Z P, YANG W J, et al. Enhanced energy storage performance in Sr0.7La0.2Zr0.15Ti0.85O3-modified Bi0.5Na0.5TiO3 ceramics via constructing local phase coexistence[J]. Chem Eng J, 2022, 446: 137105.
[22] JIANG Y L, NIU X, LIANG W, et al. Enhanced energy storage performance in Na0.5Bi0.5TiO3-based relaxor ferroelectric ceramics via compositional tailoring[J]. Materials, 2022, 15(17): 5881.
[23] SUN Y L, ZHANG L, HUANG Q W, et al. Ultrahigh energy storage density in glassy ferroelectric thin films under low electric field[J]. Adv Sci, 2022, 9(31): e2203926.
[24] WANG Z P, KANG R R, HONG Z K, et al. Achieving ultrahigh energy-storage density with excellent thermal stability in Sr0.7Bi0.2TiO3-based relaxors via polarization behavior modulation[J]. ACS Appl Mater Interfaces, 2022, 14(39): 44389-44397.
[25] ABBAS W, HO D, PRAMANICK A. High energy efficiency and thermal stability of BaTiO3-BiScO3 thin films based on defects engineering[J]. ACS Appl Electron Mater, 2021, 3(3): 1097-1106.
[26] CHE Z Y, MA L, LUO G G, et al. Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance[J]. Nano Energy, 2022, 100: 107484.
[27] WANG Y S, CHEN Y H, ZHAO D E, et al. Simultaneously enhanced energy density and discharge efficiency of (Na0.5Bi0.5)0.7Sr0.3TiO3-La1/3(Ta0.5Nb0.5)O3 lead-free energy storage ceramics via grain inhibition and dielectric peak flattening engineering[J]. Dalton Trans, 2022, 51(36): 13867-13877.
[28] DENG Wei, LI Hao, LI Zhipeng, et al. China Ceram, 2023, 59(9): 20-27.
[29] CHEN L M, ZHOU J, XU L Z, et al. Achieving ultra-short discharge time and high energy density in lead-based antiferroelectric ceramics by A-site substitution[J]. Chem Eng J, 2022, 447: 137367.
[30] LI C J, YAO M W, YAO X. An effective strategy for enhancing energy storage density in (Pb1?1.5xGdx)(Zr0.87Sn0.12Ti0.01)O3 antiferroelectric ceramics[J]. J Mater Chem A, 2023, 11(35): 18689-18701.
[31] XIE Y J, HAO H, XIE J, et al. Ultra-high energy storage density and enhanced dielectric properties in BNT-BT based thin film[J]. Ceram Int, 2021, 47(16): 23259-23266.
[32] SUI H T, SUN H J, XIAO S B, et al. Boosting energy storage performance of relaxor Na0.5Bi0.5(Fe0.03Ti0.97)O3/Na0.5Bi0.5(Zr0.02Ti0.98)O3- based multilayer thin films under moderate electric field via aging & treating processing[J]. J Power Sources, 2021, 506: 230190.
[33] XU H H, HAO H, XIE Y J, et al. Microcrystalline structure modulation and energy storage properties of BaZr0.25Ti0.75O3 thin films[J]. J Alloys Compd, 2022, 907: 164236.
[34] LI Z, ZHAO Y, LI W L, et al. Enhanced energy storage properties of amorphous BiFeO3/Al2O3 multilayers[J]. J Mater Res Technol, 2021, 11: 1852-1858.
[35] SONG B J, WU S H, YAN H, et al. Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer[J]. J Mater Sci Technol, 2021, 77: 178-186.
[36] ACHARYA M, BANYAS E, RAMESH M, et al. Exploring the Pb1-xSrxHfO3 system and potential for high capacitive energy storage density and efficiency[J]. Adv Mater, 2022, 34(1): 2105967.
[37] CHEN Q Q, ZHANG Y Y, ZHANG J, et al. Effects of Ti-doping on energy storage properties and cycling stability of Pb0.925La0.05ZrO3 antiferroelectric thin films[J]. Mater Sci Eng B, 2022, 286: 116024.
[38] WU M Y, YU S H, WANG X H, et al. Ultra-high energy storage density and ultra-wide operating temperature range in Bi2Zn2/3Nb4/3O7 thin film as a novel lead-free capacitor[J]. J Power Sources, 2021, 497: 229879.
[39] YAN J, WANG Y L, WANG C M, et al. Boosting energy storage performance of low-temperature sputtered CaBi2Nb2O9 thin film capacitors via rapid thermal annealing[J]. J Adv Ceram, 2021, 10(3): 627-635.
[40] YANG C H, LV P P, QIAN J, et al. Fatigue-free and bending-endurable flexible Mn-doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 film capacitor with an ultrahigh energy storage performance[J]. Adv Energy Mater, 2019, 9(18): 1803949.