• Frontiers of Optoelectronics
  • Vol. 15, Issue 3, 12200 (2022)
Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, and Xiaoliang Zhang*
Author Affiliations
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.1007/s12200-022-00038-z Cite this Article
    Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200 Copy Citation Text show less
    References

    [1] Hui, W., Chao, L., Lu, H., Xia, F., Wei, Q., Su, Z., Niu, T., Tao, L., Du, B., Li, D., Wang, Y., Dong, H., Zuo, S., Li, B., Shi, W., Ran, X., Li, P., Zhang, H., Wu, Z., Ran, C., Song, L., Xing, G., Gao, X., Zhang, J., Xia, Y., Chen, Y., Huang, W.: Stabilizing blackphase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021)

    [2] Zhang, F., Ma, Z., Shi, Z., Chen, X., Wu, D., Li, X., Shan, C.: Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy Mater. Adv. 2021, 1–38 (2021)

    [3] Chen, J.X., Zheng, S.Y., Jia, D.L., Liu, W.L., Andruszkiewicz, A., Qin, C.C., Yu, M., Liu, J.H., Johansson, E.M.J., Zhang, X.L.: Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. Acs Energy Lett. 6, 1970–1989 (2021)

    [4] Zheng, S.Y., Wang, Y.F., Jia, D.L., Tian, L., Chen, J.X., Shan, L.W., Dong, L.M., Zhang, X.L.: Strong coupling of colloidal quantum dots via self-assemble passivation for efficient infrared solar cells. Adv. Mater. Interfaces 8, 2100489 (2021)

    [5] Yang, H., Gutiérrez-Arzaluz, L., Maity, P., Abdulhamid, M.A., Yin, J., Zhou, Y., Chen, C., Han, Y., Szekely, G., Bakr, O.M., Mohammed, O.F.: Air-resistant lead halide perovskite nanocrystals embedded into polyimide of intrinsic microporosity. Energy Mater. Adv. 2021, 1–9 (2021)

    [6] Wang, Y., Mei, X., Qiu, J., Zhou, Q., Jia, D., Yu, M., Liu, J., Zhang, X.: Insight into the interface engineering of a SnO2/FAPbI3 perovskite using lead halide as an interlayer: a first-principles study. J. Phys. Chem. Lett. 12, 11330–11338 (2021)

    [7] Shan, S., Li, Y., Wu, H., Chen, T., Niu, B., Zhang, Y., Wang, D., Kan, C., Yu, X., Zuo, L., Chen, H.: Manipulating the film morphology evolution toward green solvent-processed perovskite solar cells. SusMat 1, 537–544 (2021)

    [8] Wang, Y., Liu, J., Yu, M., Zhong, J., Zhou, Q., Qiu, J., Zhang, X.: SnO2 surface halogenation to improve photovoltaic performance of perovskite solar cells. Acta Phys.-Chim. Sin. 37, 2006030 (2021)

    [9] Zhang, D., Fan, B., Ying, L., Li, N., Brabec, C.J., Huang, F., Cao, Y.: Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1, 4–23 (2021)

    [10] Zou, G., Chen, Z., Li, Z., Yip, H.-L.: Blue perovskite light-emitting diodes: opportunities and challenges. Acta Phys.-Chim. Sin. 37, 2009002 (2021)

    [11] Mei, X., Jia, D., Chen, J., Zheng, S., Zhang, X.: Approaching high-performance light-emitting devices upon perovskite quantum dots: advances and prospects. Nano Today 43, 101449 (2022)

    [12] Bi, C.H., Kershaw, S.V., Rogach, A.L., Tian, J.J.: Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 29, 1902446 (2019)

    [13] Zheng, C., Liu, A., Bi, C., Tian, J.: SCN-doped CsPbI3 for improving stability and photodetection performance of colloidal quantum dots. Acta Phys.-Chim. Sin. 37, 2007084 (2021)

    [14] Wu, J., Li, Y., Shi, J., Wu, H., Luo, Y., Li, D., Meng, Q.: UV photodetectors based on high quality CsPbCl3 film prepared by a two-step diffusion method. Acta Phys.-Chim. Sin. 37, 2004041 (2021)

    [15] Jia, D., Chen, J., Mei, X., Fan, W., Luo, S., Yu, M., Liu, J., Zhang, X.: Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14, 4599–4609 (2021)

    [16] Chen, J., Jia, D., Johansson, E.M.J., Hagfeldt, A., Zhang, X.: Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci. 14, 224–261 (2021)

    [17] Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., Chakrabarti, T., Luther, J.M.: Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)

    [18] Chen, K.Q., Zhong, Q.H., Chen, W., Sang, B.H., Wang, Y.W., Yang, T.Q., Liu, Y.L., Zhang, Y.P., Zhang, H.: Short-chain ligandpassivated stable alpha-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019)

    [19] Shi, J.W., Li, F.C., Jin, Y., Liu, C., Cohen-Kleinstein, B., Yuan, S., Li, Y.Y., Wang, Z.K., Yuan, J.Y., Ma, W.L.: In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. Int. Ed. 59, 22230–22237 (2020)

    [20] Qian, Y.L., Shi, Y., Shi, G.Y., Shi, G.Z., Zhang, X.L., Yuan, L., Zhong, Q.X., Liu, Y., Wang, Y., Ling, X.F., Li, F.C., Cao, M.H., Li, S.J., Zhang, Q., Liu, Z.K., Ma, W.L.: The impact of precursor ratio on the synthetic production, surface chemistry, and photovoltaic performance of CsPbI3 perovskite quantum dots. Sol. RRL 5, 2100090 (2021)

    [21] Sanehira, E.M., Marshall, A.R., Christians, J.A., Harvey, S.P., Ciesielski, P.N., Wheeler, L.M., Schulz, P., Lin, L.Y., Beard, M.C., Luther, J.M.: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)

    [22] Wheeler, L.M., Sanehira, E.M., Marshall, A.R., Schulz, P., Suri, M., Anderson, N.C., Christians, J.A., Nordlund, D., Sokaras, D., Kroll, T., Harvey, S.P., Berry, J.J., Lin, L.Y., Luther, J.M.: Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018)

    [23] Zhang, L., Kang, C., Zhang, G., Pan, Z., Huang, Z., Xu, S., Rao, H., Liu, H., Wu, S., Wu, X., Li, X., Zhu, Z., Zhong, X., Jen, A.K.Y.: All-inorganic CsPbI3 quantum dot solar cells with efficiency over 16% by defect control. Adv. Funct. Mater. 31, 2100090 (2020)

    [24] Wang, Y., Yuan, J.Y., Zhang, X.L., Ling, X.F., Larson, B.W., Zhao, Q., Yang, Y.G., Shi, Y., Luther, J.M., Ma, W.L.: Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32, 2000449 (2020)

    [25] Chen, J.X., Jia, D.L., Qiu, J.M., Zhuang, R.S., Hua, Y., Zhang, X.L.: Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy 96, 107140 (2022)

    [26] Yuan, J., Ling, X., Yang, D., Li, F., Zhou, S., Shi, J., Qian, Y., Hu, J., Sun, Y., Yang, Y., Gao, X., Duhm, S., Zhang, Q., Ma, W.: Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule. 2, 2450–2463 (2018)

    [27] Zhao, Q., Hazarika, A., Chen, X., Harvey, S.P., Larson, B.W., Teeter, G.R., Liu, J., Song, T., Xiao, C., Shaw, L., Zhang, M., Li, G., Beard, M.C., Luther, J.M.: High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019)

    [28] Chen, K., Jin, W., Zhang, Y., Yang, T., Reiss, P., Zhong, Q., Bach, U., Li, Q., Wang, Y., Zhang, H., Bao, Q., Liu, Y.: High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020)

    [29] Hu, L., Zhao, Q., Huang, S., Zheng, J., Guan, X., Patterson, R., Kim, J., Shi, L., Lin, C.H., Lei, Q., Chu, D., Tao, W., Cheong, S., Tilley, R.D., Ho-Baillie, A.W.Y., Luther, J.M., Yuan, J., Wu, T.: Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021)

    [30] Hao, M., Bai, Y., Zeiske, S., Ren, L., Liu, J., Yuan, Y., Zarrabi, N., Cheng, N., Ghasemi, M., Chen, P., Lyu, M., He, D., Yun, J.-H., Du, Y., Wang, Y., Ding, S., Armin, A., Meredith, P., Liu, G., Cheng, H.-M., Wang, L.: Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020)

    [31] Xue, J., Lee, J.-W., Dai, Z., Wang, R., Nuryyeva, S., Liao, M.E., Chang, S.-Y., Meng, L., Meng, D., Sun, P., Lin, O., Goorsky, M.S., Yang, Y.: Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule. 2, 1866–1878 (2018)

    [32] Xue, J., Wang, R., Chen, L., Nuryyeva, S., Han, T.H., Huang, T., Tan, S., Zhu, J., Wang, M., Wang, Z.K., Zhang, C., Lee, J.W., Yang, Y.: A small-molecule, “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, e1900111 (2019)

    [33] Li, F., Zhou, S., Yuan, J., Qin, C., Yang, Y., Shi, J., Ling, X., Li, Y., Ma, W.: Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. Acs Energy Lett. 4, 2571–2578 (2019)

    [34] Ji, K., Yuan, J.B., Li, F.C., Shi, Y., Ling, X.F., Zhang, X.L., Zhang, Y.N., Lu, H.Y., Yuan, J.Y., Ma, W.L.: High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104–8112 (2020)

    [35] Ling, X., Yuan, J., Zhang, X., Qian, Y., Zakeeruddin, S.M., Larson, B.W., Zhao, Q., Shi, J., Yang, J., Ji, K., Zhang, Y., Wang, Y., Zhang, C., Duhm, S., Luther, J.M., Gratzel, M., Ma, W.: Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, e2001906 (2020)

    [36] Protesescu, L., Yakunin, S., Kumar, S., Bar, J., Bertolotti, F., Masciocchi, N., Guagliardi, A., Grotevent, M., Shorubalko, I., Bodnarchuk, M.I., Shih, C.J., Kovalenko, M.V.: Dismantling the “Red Wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017)

    [37] Qiu, J., Zhou, Q., Jia, D., Wang, Y., Li, S., Zhang, X.: Robust molecular-dipole-induced surface functionalization of inorganic perovskites for efficient solar cells. J. Mater. Chem. A 10, 1821–1830 (2022)

    [38] El-Ballouli, A.O., Bakr, O.M., Mohammeed, O.F.: Compositional, processing, and interfacial engineering of nanocrystal- and quantum-dot-based perovskite solar cells. Chem. Mater. 31, 6387–6411 (2019)

    [39] Hazarika, A., Zhao, Q., Gaulding, E.A., Christians, J.A., Dou, B., Marshall, A.R., Moot, T., Berry, J.J., Johnson, J.C., Luther, J.M.: Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of a-site cation composition. ACS Nano 12, 10327–10337 (2018)

    [40] Levchuk, I., Osvet, A., Tang, X., Brandl, M., Perea, J.D., Hoegl, F., Matt, G.J., Hock, R., Batentschuk, M., Brabec, C.J.: Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 17, 2765–2770 (2017)

    [41] Lu, H., Liu, Y., Ahlawat, P., Mishra, A., Tress, W.R., Eickemeyer, F.T., Yang, Y., Fu, F., Wang, Z., Avalos, C.E., Carlsen, B.I., Agarwalla, A., Zhang, X., Li, X., Zhan, Y., Zakeeruddin, S.M., Emsley, L., Rothlisberger, U., Zheng, L., Hagfeldt, A., Gratzel, M.: Vaporassisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science (2020)

    [42] Rothmann, M.U., Kim, J.S., Borchert, J., Lohmann, K.B., O’Leary, C.M., Sheader, A.A., Clark, L., Snaith, H.J., Johnston, M.B., Nellist, P.D., Herz, L.M.: Atomic-scale microstructure of metal halide perovskite. Science 370, 548 (2020)

    [43] Jia, D., Chen, J., Qiu, J., Ma, H., Yu, M., Liu, J., Zhang, X.: Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule. 6, 1632–1653 (2022)

    [44] Imran, M., Caligiuri, V., Wang, M., Goldoni, L., Prato, M., Krahne, R., De Trizio, L., Manna, L.: Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140, 2656–2664 (2018)

    [45] Huang, H., Li, Y., Tong, Y., Yao, E.P., Feil, M.W., Richter, A.F., Doblinger, M., Rogach, A.L., Feldmann, J., Polavarapu, L.: Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: a versatile approach for their shapecontrolled synthesis. Angew. Chem. Int. Ed. 58, 16558–16562 (2019)

    [46] Ling, X.F., Zhou, S.J., Yuan, J.Y., Shi, J.W., Qian, Y.L., Larson, B.W., Zhao, Q., Qin, C.C., Li, F.C., Shi, G.Z., Stewart, C., Hu, J.X., Zhang, X.L., Luther, J.M., Duhm, S., Ma, W.L.: 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9, 1900721 (2019)

    [47] Kim, J., Koo, B., Kim, W.H., Choi, J., Choi, C., Lim, S.J., Lee, J.S., Kim, D.H., Ko, M.J., Kim, Y.: Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics. Nano Energy 66, 104130 (2019)

    [48] Kim, J., Cho, S., Dinic, F., Choi, J., Choi, C., Jeong, S.M., Lee, J.S., Voznyy, O., Ko, M.J., Kim, Y.: Hydrophobic stabilizeranchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy 75, 104985 (2020)

    [49] Jia, D., Chen, J., Yu, M., Liu, J., Johansson, E.M.J., Hagfeldt, A., Zhang, X.: Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 16, e2001772 (2020)

    [50] Liu, T., Guo, J., Lu, D., Xu, Z., Fu, Q., Zheng, N., Xie, Z., Wan, X., Zhang, X., Liu, Y., Chen, Y.: Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells. ACS Nano 15, 7811–7820 (2021)

    [51] Li, Q., Dong, Y., Lv, G., Liu, T., Lu, D., Zheng, N., Dong, X., Xu, Z., Xie, Z., Liu, Y.: Fluorinated aromatic formamidinium spacers boost efficiency of layered ruddlesden-popper perovskite solar cells. Acs Energy Lett. 6, 2072–2080 (2021)

    [52] Yoon, Y.J., Lee, K.T., Lee, T.K., Kim, S.H., Shin, Y.S., Walker, B., Park, S.Y., Heo, J., Lee, J., Kwak, S.K., Kim, G.H., Kim, J.Y.: Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule. 2, 2105–2116 (2018)

    [53] Suri, M., Hazarika, A., Larson, B.W., Zhao, Q., Vallés-Pelarda, M., Siegler, T.D., Abney, M.K., Ferguson, A.J., Korgel, B.A., Luther, J.M.: Enhanced open-circuit voltage of wide-bandgap perovskite photovoltaics by using alloyed (FA1–xCsx)Pb(I1–xBrx)3 quantum dots. Acs Energy Lett. 4, 1954–1960 (2019)

    [54] Yang, S., Dai, J., Yu, Z., Shao, Y., Zhou, Y., Xiao, X., Zeng, X.C., Huang, J.: Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019)

    [55] Wang, Q., Jin, Z., Chen, D., Bai, D., Bian, H., Sun, J., Zhu, G., Wang, G., Liu, S.F.: μ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv Energy Mater. 8, 1800007 (2018)

    [56] Zhou, Q., Qiu, J., Wang, Y., Yu, M., Liu, J., Zhang, X.: Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. Acs Energy Lett. 6, 1596–1606 (2021)

    [57] Jia, D.L., Chen, J.X., Zheng, S.Y., Phuyal, D., Yu, M., Tian, L., Liu, J.H., Karis, O., Rensmo, H., Johansson, E.M.J., Zhang, X.: Highly stabilized quantum dot ink for efficient infrared light absorbing solar cells. Adv. Energy Mater. 9, 1902809 (2019)

    Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200
    Download Citation