[3] AL-KINDI G A, SHIRINZADEH B. Feasibility assessment of vision-based surface roughness parameters acquisition for different types of machined specimens[J]. Image and Vision Computing, 27, 444-458(2009).
[4] WHITEHOUSE D J. Stylus contact method for surface metrology in the ascendancy[J]. Measurement and Control, 31, 48-50(1998).
[10] CHEN Y L, YI H A, LIAO C, et al. Visual measurement of milling surface roughness based on Xception model with convolutional neural network[J]. Measurement, 186, 110217(2021).
[11] RIFAI A P, AOYAMA H, THO N H, et al. Evaluation of turned and milled surfaces roughness using convolutional neural network[J]. Measurement, 161, 107860(2020).
[13] SIMONYAN K, ZISSERMAN A. Very deep convolutional wks f largescale image recognition[C]3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
[14] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture f computer vision[C]2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2818 2826.
[15] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional wks[C]2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu: IEEE, 2017: 2261 2269.