• Photonics Research
  • Vol. 10, Issue 11, 2584 (2022)
Ji Eun Bae1, Xavier Mateos2, Magdalena Aguiló2, Francesc Díaz2, Javier García Ajates3, Carolina Romero3, Javier Rodríguez Vázquez de Aldana3, and Fabian Rotermund1、*
Author Affiliations
  • 1Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
  • 2Universitat Rovira i Virgili (URV), Física i Cristal·lografia de Materials i Nanomaterials (FiCMA), 43007 Tarragona, Spain
  • 3Grupo de Investigación en Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
  • show less
    DOI: 10.1364/PRJ.471688 Cite this Article Set citation alerts
    Ji Eun Bae, Xavier Mateos, Magdalena Aguiló, Francesc Díaz, Javier García Ajates, Carolina Romero, Javier Rodríguez Vázquez de Aldana, Fabian Rotermund. Multi-gigahertz mode-locked femtosecond Yb:KLuW waveguide lasers[J]. Photonics Research, 2022, 10(11): 2584 Copy Citation Text show less
    Schematic of the Yb:KLuW WG laser for SWCNT-SA mode-locking. The optical microscope image (red box) represents the input channel of the fs-DLW Yb:KLuW WG.
    Fig. 1. Schematic of the Yb:KLuW WG laser for SWCNT-SA mode-locking. The optical microscope image (red box) represents the input channel of the fs-DLW Yb:KLuW WG.
    Oscilloscope traces of the mode-locked pulses at repetition frequencies of (a), (b) 2.27 GHz, (c), (d) 2.69 GHz, and (e), (f) 3.55 GHz in different time spans of 10 μs and 7 ns.
    Fig. 2. Oscilloscope traces of the mode-locked pulses at repetition frequencies of (a), (b) 2.27 GHz, (c), (d) 2.69 GHz, and (e), (f) 3.55 GHz in different time spans of 10 μs and 7 ns.
    Radio-frequency spectra of the mode-locked pulses at repetition rates of (a), (b) 2.27 GHz, (c), (d) 2.69 GHz, and (e), (f) 3.55 GHz. (a), (c), and (e) show the harmonics of the mode-locked frequency in a wide frequency span, while (b), (d), and (f) show the fundamental beat note in a 2-MHz-frequency span.
    Fig. 3. Radio-frequency spectra of the mode-locked pulses at repetition rates of (a), (b) 2.27 GHz, (c), (d) 2.69 GHz, and (e), (f) 3.55 GHz. (a), (c), and (e) show the harmonics of the mode-locked frequency in a wide frequency span, while (b), (d), and (f) show the fundamental beat note in a 2-MHz-frequency span.
    Autocorrelation traces and their sech2 fit (red curves) of the mode-locked pulses at repetition rates of (a) 2.27 GHz, (b) 2.69 GHz, and (c) 3.55 GHz at the maximum power.
    Fig. 4. Autocorrelation traces and their sech2 fit (red curves) of the mode-locked pulses at repetition rates of (a) 2.27 GHz, (b) 2.69 GHz, and (c) 3.55 GHz at the maximum power.
    (a) 3.55-GHz mode-locked laser spectrum (inset: laser beam profile) at the maximum power and (b) average output powers versus absorbed pump powers for the CW and the 3.55-GHz mode-locked operation.
    Fig. 5. (a) 3.55-GHz mode-locked laser spectrum (inset: laser beam profile) at the maximum power and (b) average output powers versus absorbed pump powers for the CW and the 3.55-GHz mode-locked operation.
    frep [GHz]PCW,max (ηCW)Pmode-lock,max (ηmode-lock)Δλ (λcenter) [nm]Δτ [fs]TBP
    2.27249 mW (23.4%)227 mW (22.0%)2.0 (1030.8)7360.415
    2.69272 mW (24.5%)214 mW (20.4%)1.7 (1030.8)8080.388
    3.55274 mW (26.3%)217 mW (21.8%)1.6 (1030.6)8760.396
    Table 1. Laser Performance at Three Different Mode-Locking Frequencies (frep)a,b
    Ji Eun Bae, Xavier Mateos, Magdalena Aguiló, Francesc Díaz, Javier García Ajates, Carolina Romero, Javier Rodríguez Vázquez de Aldana, Fabian Rotermund. Multi-gigahertz mode-locked femtosecond Yb:KLuW waveguide lasers[J]. Photonics Research, 2022, 10(11): 2584
    Download Citation