• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 11, 2917 (2022)
JIN Linghua1,*, YANG Huiyuan1, CHEN Xiaojie1, WANG Weike2,3..., LI Jian1 and ZHANG Ye1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20220284 Cite this Article
    JIN Linghua, YANG Huiyuan, CHEN Xiaojie, WANG Weike, LI Jian, ZHANG Ye. Electrochemical Energy Storage Performance of Nickel Oxalate Prepared by Precipitation Method[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2917 Copy Citation Text show less
    References

    [1] DAZ-GONZLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renew Sus Energ Rev, 2012, 16(4): 2154-2171.

    [2] MOFIJUR M, MAHLIA T M I, SILITONGA A S, et al. Phase change materials (PCM) for solar energy usages and storage: An overview[J]. Energies, 2019, 12(16): 3167.

    [4] CHOUDHARY N, Li C, MOORE J, NAGAIAH N, et al. Asymmetric supercapacitor electrodes and devices[J]. Adv Mater, 2017, 29(21): 1605336.

    [5] SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nat Mater, 2020, 19: 1151-1163.

    [6] FOROUZANDEH P, KUMARAVEL V, PILLA S C. Electrode materials for supercapacitors: A review of recent advances[J]. Catalysts, 2020, 10(9): 969.

    [7] MUZAFFAR A, AHAMED M B, DESHMUKH K, et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications[J]. Renew Sus Energy Rev, 2019, 101: 123-145.

    [8] LI Q H, LU W, LI Z P, et al. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors[J]. Chem Eng J, 2020, 380(15): 122544.

    [9] LIANG H Y, LIN J H, JIA H N, et al. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor[J]. J Power Sources, 2018, 378(28): 248-254.

    [10] LI K L, LIU X Y, ZHENG T X, et al. Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors[J]. Chem Eng J, 2019, 370(15): 136-147.

    [11] HOU L Q, YANG W, LI R, et al. Self-reconstruction strategy to synthesis of Ni/Co-OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage[J]. Chem Eng J, 2020, 396(15): 125323.

    [12] EDISON T N J I, ATCHUDAN R, LEE Y R. Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction[J]. Inter J Hydrogen Energy, 2019, 44(4): 2323-2329.

    [13] YANG R J, FAN Y Y, YE R Q, et al. MnO2-based materials for environmental applications[J]. Adv Mater, 2021, 33(9): 2004862.

    [14] HU X R, WEI L S, CHEN R, et al. Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application[J]. Chem Select, 2020, 5(17): 5268-5288.

    [15] KATE R S, KHALATE S A, DEOKATE R J. Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review[J]. J Alloys Compd, 2018, 734(15): 89-111.

    [16] HU H, GUAN B Y, Lou X W (David). Construction of Complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors[J]. Chem, 2016, 1(1): 102-113.

    [17] GUAN B, LI Y, YIN B Y, et al. ZHANG H H, CHENG C J. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor[J]. Chem Eng J, 2017, 308(15): 1165-1173.

    [18] CHEN X, LIU Q, BAI T, et al. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices[J]. Chem Eng J, 2021, 409(1): 127237.

    [19] CHENG G H, XU J L, DONG C Q, et al. Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors[J]. J Mater Chem A, 2014, 2: 17307-17313.

    [20] WANG L, ZHANG R N, JIANG Y, et al. Interfacial synthesis of micro-cuboid Ni0.55Co0.45C2O4 solid solution with enhanced electrochemical performance for hybrid supercapacitors[J]. Nanoscale, 2019, 11: 13894-13902.

    [21] ZHANG Y Z, ZHAO J H, XIA J, et al. Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device[J]. Sci Rep, 2015, 5: 8536.

    [23] WANG X, LI H, LI H, et al. Heterostructures of Ni-Co-Al layered double hydroxide assembled on V4C3 MXene for high energy hybrid supercapacitors[J]. J Mater Chem A, 2019, 7(5): 2291-2300.

    [25] GAO Y L, WU J X, ZHANG W, et al. Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (NiC2O4/ZIF-67) as a supercapacitor electrode[J]. New J Chem, 2015, 39: 94-97.

    [26] HE X Y, LIU Q, LIU J Y, et al. High-performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo2S4/polyaniline nanosheets[J]. Chem Eng J, 2017, 325(1): 134-143.

    [27] ZHANG J, ZHAO X S. On the configuration of supercapacitors for maximizing electrochemical performance[J]. Chemsus Chem, 2012, 5(5): 818-841.

    JIN Linghua, YANG Huiyuan, CHEN Xiaojie, WANG Weike, LI Jian, ZHANG Ye. Electrochemical Energy Storage Performance of Nickel Oxalate Prepared by Precipitation Method[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2917
    Download Citation