• Nano-Micro Letters
  • Vol. 17, Issue 1, 018 (2025)
Qiqi Sun1, Zelong Gong1, Tao Zhang1, Jiafeng Li1..., Xianli Zhu1, Ruixiao Zhu1, Lingxu Wang1, Leyuan Ma1, Xuehui Li1, Miaofa Yuan1, Zhiwei Zhang1, Luyuan Zhang1, Zhao Qian1,*, Longwei Yin1,**, Rajeev Ahuja2 and Chengxiang Wang1,***|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, People’s Republic of China
  • 2Condensed Matter Theory, Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
  • show less
    DOI: 10.1007/s40820-024-01508-z Cite this Article
    Qiqi Sun, Zelong Gong, Tao Zhang, Jiafeng Li, Xianli Zhu, Ruixiao Zhu, Lingxu Wang, Leyuan Ma, Xuehui Li, Miaofa Yuan, Zhiwei Zhang, Luyuan Zhang, Zhao Qian, Longwei Yin, Rajeev Ahuja, Chengxiang Wang. Molecule-Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery[J]. Nano-Micro Letters, 2025, 17(1): 018 Copy Citation Text show less
    References

    [1] C.M. Thomas, W.J. Hyun, H.C. Huang, D. Zeng, M.C. Hersam, Blade-coatable hexagonal boron nitride ionogel electrolytes for scalable production of lithium metal batteries. ACS Energy Lett. 7(4), 1558–1565 (2022).

    [2] H. Li, Y. Kang, W. Wei, C. Yan, X. Ma et al., Branch-chain-rich diisopropyl ether with steric hindrance facilitates stable cycling of lithium batteries at − 20 °C. Nano-Micro Lett. 16, 197 (2024).

    [3] E. Park, J. Park, K. Lee, Y. Zhao, T. Zhou et al., Exploiting the steric effect and low dielectric constant of 1,2-dimethoxypropane for 4.3 V lithium metal batteries. ACS Energy Lett. 8(1), 179–188 (2023).

    [4] Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16, 181 (2024).

    [5] W. Cai, Y. Deng, Z. Deng, Y. Jia, Z. Li et al., Quasi-localized high-concentration electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 13(31), 2301396 (2023).

    [6] Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024).

    [7] H. Wang, J. Song, K. Zhang, Q. Fang, Y. Zuo et al., A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy Environ. Sci. 15(12), 5149–5158 (2022).

    [8] H. Wan, Z. Wang, S. Liu, B. Zhang, X. He et al., Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8(5), 473–481 (2023).

    [9] L. Lin, F. Liu, Y. Zhang, C. Ke, H. Zheng et al., Adjustable mixed conductive interphase for dendrite-free lithium metal batteries. ACS Nano 16(8), 13101–13110 (2022).

    [10] S. Huang, K. Long, Y. Chen, T. Naren, P. Qing et al., In situ formed tribofilms as efficient organic/inorganic hybrid interlayers for stabilizing lithium metal anodes. Nano-Micro Lett. 15, 235 (2023).

    [11] M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14(1), 1082 (2023).

    [12] Z. Jiang, T. Yang, C. Li, J. Zou, H. Yang et al., Synergistic additives enabling stable cycling of ether electrolyte in 4.4 V Ni-Rich/Li metal batteries. Adv. Funct. Mater. 33(51), 2306868 (2023).

    [13] Z. Bi, Q. Sun, M. Jia, M. Zuo, N. Zhao et al., Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Adv. Funct. Mater. 32(52), 2208751 (2022).

    [14] L. Huang, H. Fu, J. Duan, T. Wang, X. Zheng et al., Negating Li+ transfer barrier at solid-liquid electrolyte interface in hybrid batteries. Chem 8(7), 1928–1943 (2022).

    [15] Y. Zhai, W. Hou, M. Tao, Z. Wang, Z. Chen et al., Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv. Mater. 34(39), 2205560 (2022).

    [16] X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14, 210 (2022).

    [17] M. Yang, F. Feng, Y. Ren, S. Chen, F. Chen et al., Coupling anion-capturer with polymer chains in fireproof gel polymer electrolyte enables dendrite-free sodium metal batteries. Adv. Funct. Mater. 33(46), 2305383 (2023).

    [18] Z. Lu, J. Yu, J. Wu, M.B. Effat, S.C.T. Kwok et al., Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers. Energy Storage Mater. 18, 311–319 (2019).

    [19] T. Deng, L. Cao, X. He, A.-M. Li, D. Li et al., In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7(11), 3052–3068 (2021).

    [20] K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60(46), 24668–24675 (2021).

    [21] Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204218 (2023).

    [22] X. Wang, X. Shen, P. Zhang, A. Zhou, J. Zhao et al., Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 42, 875–884 (2023).

    [23] Y. Shan, L. Li, X. Chen, S. Fan, H. Yang et al., Gentle haulers of lithium-ion–nanomolybdenum carbide fillers in solid polymer electrolyte. ACS Energy Lett. 7(7), 2289–2296 (2022).

    [24] Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16, 24 (2024).

    [25] L. Wang, S. Xu, Z. Wang, E. Yang, W. Jiang et al., A nano fiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience 3(2), 100090 (2023).

    [26] Z. Shen, J. Zhong, J. Chen, W. Xie, K. Yang et al., SiO2 nanofiber composite gel polymer electrolyte by in-situ polymerization for stable Li metal batteries. Chin. Chem. Lett. 34(3), 107370 (2023).

    [27] B. Qiu, F. Xu, J. Qiu, M. Yang, G. Zhang et al., Electrode-electrolyte interface mediation via molecular anchoring for 4.7 V quasi-solid-state lithium metal batteries. Energy Storage Mater. 60, 102832 (2023).

    [28] H.X. Yang, Z.K. Liu, Y. Wang, N.W. Li, L. Yu, Multiscale structural gel polymer electrolytes with fast Li+ transport for long-life Li metal batteries. Adv. Funct. Mater. 33(1), 2209837 (2023).

    [29] B. Qiu, K. Liang, W. Huang, G. Zhang, C. He et al., Crystal-facet manipulation and interface regulation via TMP-modulated solid polymer electrolytes toward high-performance Zn metal batteries. Adv. Energy Mater. 13(32), 2301193 (2023).

    [30] X. Fan, R. Zhang, S. Sui, X. Liu, J. Liu et al., Starch-based superabsorbent hydrogel with high electrolyte retention capability and synergistic interface engineering for long-lifespan flexible zinc−air batteries. Angew. Chem. Int. Ed. 62(22), e202302640 (2023).

    [31] A. Wang, S. Geng, Z. Zhao, Z. Hu, J. Luo, In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries. Adv. Funct. Mater. 32(28), 2201861 (2022).

    [32] S. Li, S. Zhang, S. Chai, X. Zang, C. Cheng et al., Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte. Energy Storage Mater. 42, 628–635 (2021).

    [33] Z. Li, S. Weng, J. Fu, X. Wang, X. Zhou et al., Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Mater. 47, 542–550 (2022).

    [34] H. Yang, Y. Qiao, Z. Chang, P. He, H. Zhou, Designing cation–solvent fully coordinated electrolyte for high-energy-density lithium–sulfur full cell based on solid–solid conversion. Angew. Chem. Int. Ed. 60(32), 17726–17734 (2021).

    [35] G. Chen, K. Zhang, Y. Liu, L. Ye, Y. Gao et al., Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chem. Eng. J. 401, 126065 (2020).

    [36] Q. Sun, Z. Cao, Z. Ma, J. Zhang, H. Cheng et al., Dipole–dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries. ACS Energy Lett. 7(10), 3545–3556 (2022).

    [37] S.-J. Tan, J. Yue, Y.-F. Tian, Q. Ma, J. Wan et al., In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Mater. 39, 186–193 (2021).

    [38] H. Sun, J. Liu, J. He, H. Wang, G. Jiang et al., Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive. Sci. Bull. 67(7), 725–732 (2022).

    [39] Q. Wang, X. Xu, B. Hong, M. Bai, J. Li et al., Molecular reactivity and interface stability modification in in-situ gel electrolyte for high performance quasi-solid-state lithium metal batteries. Energy Environ. Mater. 6(3), e12351 (2023).

    [40] J. Wu, Z. Gao, Y. Wang, X. Yang, Q. Liu et al., Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries. Nano-Micro Lett. 14, 147 (2022).

    [41] S. Lin, H. Hua, P. Lai, J. Zhao, A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 11(36), 2101775 (2021).

    [42] X. Mu, X. Li, C. Liao, H. Yu, Y. Jin et al., Phosphorus-fixed stable interfacial nonflammable gel polymer electrolyte for safe flexible lithium-ion batteries. Adv. Funct. Mater. 32(35), 2203006 (2022).

    [43] D. Seng, M. Georges, Living radical emulsion polymerization using the nanoprecipitation technique: an extension to atom transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 44(13), 4027–4038 (2006).

    [44] Y. Wang, S. Chen, Z. Li, C. Peng, Y. Li et al., In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries. Energy Storage Mater. 45, 474–483 (2022).

    [45] Q. Sun, S. Wang, Y. Ma, D. Song, H. Zhang et al., Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv. Mater. 35(28), 2300998 (2023).

    [46] Y. Su, X. Rong, A. Gao, Y. Liu, J. Li et al., Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 13(1), 4181 (2022).

    [47] L. Qiao, S. Rodriguez Peña, M. Martínez-Ibañez, A. Santiago, I. Aldalur et al., Anion π–π stacking for improved lithium transport in polymer electrolytes. J. Am. Chem. Soc. 144(22), 9806–9816 (2022).

    [48] F. Chen, X. Wang, M. Armand, M. Forsyth, Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat. Mater. 21(10), 1175–1182 (2022).

    [49] M. Arrese-Igor, M. Martinez-Ibañez, E. Pavlenko, M. Forsyth, H. Zhu et al., Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes. ACS Energy Lett. 7(4), 1473–1480 (2022).

    [50] J. Hu, C. Lai, K. Chen, Q. Wu, Y. Gu et al., Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries. Nat. Commun. 13(1), 7914 (2022).

    [51] J. Ma, G. Zhong, P. Shi, Y. Wei, K. Li et al., Constructing a highly efficient “solid–polymer–solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy Environ. Sci. 15(4), 1503–1511 (2022).

    [52] H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7(23), 2003370 (2020).

    [53] S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021).

    [54] J. He, A. Bhargav, A. Manthiram, Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem. Int. Ed. 61(18), e202116586 (2022).

    [55] C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang et al., Structure and interface design enable stable Li-rich cathode. J. Am. Chem. Soc. 142(19), 8918–8927 (2020).

    [56] X. Yu, L. Wang, J. Ma, X. Sun, X. Zhou et al., Selectively wetted rigid–flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv. Energy Mater. 10(18), 1903939 (2020).

    [57] Q. Zhou, S. Dong, Z. Lv, G. Xu, L. Huang et al., A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater. 10(6), 1903441 (2020).

    [58] W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60(23), 12931–12940 (2021).

    [59] Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He et al., A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 4(8), 1776–1789 (2020).

    Qiqi Sun, Zelong Gong, Tao Zhang, Jiafeng Li, Xianli Zhu, Ruixiao Zhu, Lingxu Wang, Leyuan Ma, Xuehui Li, Miaofa Yuan, Zhiwei Zhang, Luyuan Zhang, Zhao Qian, Longwei Yin, Rajeev Ahuja, Chengxiang Wang. Molecule-Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery[J]. Nano-Micro Letters, 2025, 17(1): 018
    Download Citation