• Chinese Journal of Lasers
  • Vol. 46, Issue 7, 0704007 (2019)
Guicun Li1、2, Yami Fang1、2、*, Rongyi Ji3、**, Zili Zhang3、4, Hao Zhang1、2, Jinzhen Mu1、2, and Ting Song1、2
Author Affiliations
  • 1 Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
  • 2 Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai 201109, China
  • 3 Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China
  • 4 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL201946.0704007 Cite this Article Set citation alerts
    Guicun Li, Yami Fang, Rongyi Ji, Zili Zhang, Hao Zhang, Jinzhen Mu, Ting Song. High-Precision Laser Tracking System Based on Two-Dimensional Galvanometers and Position Sensitive Detectors[J]. Chinese Journal of Lasers, 2019, 46(7): 0704007 Copy Citation Text show less
    References

    [1] Bradshaw M J, Gao Y, Homewood K. Performance modelling of the fine lateral and longitudinal sensor (FLLS) for ESA's PROBA-3 mission[J]. Proceedings of SPIE, 10743, 107430H(2018).

    [2] Lu R S, Li W H, Lao D B et al. Angular error compensation for laser tracker[J]. Optics and Precision Engineering, 22, 2299-2305(2014).

    [3] Chen H F, Sun Y Q, Wang Y W et al. High-precision laser tracking measurement method and experimental study[J]. Chinese Journal of Lasers, 45, 0104003(2018).

    [4] Zhe W J, Gao L M, Yang Y Q et al. Calibration and compensation of angular error in laser tracker[J]. Chinese Journal of Scientific Instrument, 36, 52-56(2015).

    [5] Zhang W Y, Lao D B, Zhou W H et al. Self-calibration method based on multi-head reading layout[J]. Acta Optica Sinica, 38, 0812001(2018).

    [6] Chen L, Zhang D W, Zhou Y L et al. Design of a high-precision and non-contact dynamic angular displacement measurement with dual-laser Doppler vibrometers[J]. Scientific Reports, 8, 9094(2018). http://www.nature.com/articles/s41598-018-27410-4

    [7] Feng B, Shi Y Y, Wu Y X et al. Research on synchronized tracking system based on rotating mirror[J]. Journal of Applied Optics, 39, 600-604(2018).

    [8] Zhao H X, Tian L D, Zhao J K et al. Analysis of attitude measurement accuracy and indoor evaluation method of photoelectric theodolite[J]. Acta Optica Sinica, 38, 0112004(2018).

    [9] Chen Z B, Fan L, Xiao W J et al. Directional error analysis of 2D galvanometer scanning system[J]. Journal of Applied Optics, 39, 180-186(2018).

    [10] Cheng X Y, Wang H H, Li N et al. A method of measuring beam scans function[J]. Laser & Infrared, 30, 211-213(2000).

    [11] Qu Y. Key technologies of high precision and low cost galvanometer scanning laser 3D vision system[D]. Harbin: Harbin Institute of Technology(2016).

    [12] Zhang J Y, Fan T Q, Cao X D. Dynamic photoelectric autocollimator based on two-dimension position sensitive detector[J]. Proceedings of SPIE, 6723, 672315(2007). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1305177

    [13] Pokorny P. One-mirror and two-mirror three-dimensional optical scanners: position and accuracy of laser beam spot[J]. Applied Optics, 53, 2730-2740(2014).

    [14] Han W P, Meng W, Li Y X et al. Error analysis and correction methods of dual galvanometer scanning[J]. Electro-Optic Technology Application, 26, 14-18(2011).

    Guicun Li, Yami Fang, Rongyi Ji, Zili Zhang, Hao Zhang, Jinzhen Mu, Ting Song. High-Precision Laser Tracking System Based on Two-Dimensional Galvanometers and Position Sensitive Detectors[J]. Chinese Journal of Lasers, 2019, 46(7): 0704007
    Download Citation