• Acta Photonica Sinica
  • Vol. 49, Issue 10, 1015001 (2020)
Yi-peng LIAO1, Jie-jie YANG1, Zhi-gang WANG2, and Wei-xing WANG1、*
Author Affiliations
  • 1College of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China
  • 2Fujian Jindong Mining Co. Ltd. ,Sanming,Fujian 365101,China
  • show less
    DOI: 10.3788/gzxb20204910.1015001 Cite this Article
    Yi-peng LIAO, Jie-jie YANG, Zhi-gang WANG, Wei-xing WANG. Flotation Performance Recognition Based on Dual-modality Convolutional Neural Network Adaptive Transfer Learning[J]. Acta Photonica Sinica, 2020, 49(10): 1015001 Copy Citation Text show less
    Flotation foam dual-modality image
    Fig. 1. Flotation foam dual-modality image
    Dual-modality CNN feature extraction and recognition model
    Fig. 2. Dual-modality CNN feature extraction and recognition model
    Double hidden layer autoencoder extreme learning machine
    Fig. 3. Double hidden layer autoencoder extreme learning machine
    Adaptive transfer learning model
    Fig. 4. Adaptive transfer learning model
    The operation effect of each optimization algorithm
    Fig. 5. The operation effect of each optimization algorithm
    Performance test of double hidden layer autoencoder extreme learning machine
    Fig. 6. Performance test of double hidden layer autoencoder extreme learning machine
    Test results of different training samples
    Fig. 7. Test results of different training samples
    Comparison of performance recognition results
    Fig. 8. Comparison of performance recognition results
    FunctionFunction formulaParameter rangeOptimum value
    Rosenbrockf1(x)=i=1N-1[100(xi+1-xi2)2+(xi-1)2][-10,10]0
    Rastrigrinf2(x)=i=1N[xi2-10cos(2πxi2)+10][-100,100]0
    Schewefelf3(x)=418.9829N+-xisin(xi)[-500,500]0
    Shubertf4(x)=0.5-sin2x12+x22-0.5[1+0.001(x12+x22)]2[-100,100]1
    Schafferf5(x)=i=15icos(i+1)x+ii=15icos(i+1)y+i[-100,100]-186.730 9
    Table 1. Benchmark functions information

    λ

    Δθ

    0.1π0.2π0.3π0.4π0.5π
    1.197.89/205.198.56/210.299.09/196.598.79/213.697.37/212.4
    1.297.88/208.898.84/204.499.20/204.799.16/204.698.31/198.5
    1.398.14/199.498.78/199.499.15/202.699.35/198.497.81/201.6
    1.498.56/197.698.95/196.499.64/198.799.64/202.798.33/208.1
    1.598.85/204.599.35/196.699.70/192.999.81/205.399.11/205.3
    1.699.36/209.499.12/201.399.95/190.299.85/203.898.76/197.4
    1.799.87/201.899.76/195.299.92/191.899.65/206.299.23/196.6
    1.899.78/194.399.23/198.899.63/194.399.54/199.599.15/196.1
    1.999.46/199.298.84/208.399.24/201.899.21/198.198.86/195.8
    2.098.95/206.498.97/207.199.26/202.798.89/201.398.15/202.3
    Table 2. The average optimal value probability (%) and the number of iterations
    Data setLonosphereShuttleUSPS
    Test itemAccuracy/%Times/sAccuracy/%Times/sAccuracy/%Times/s
    KELM90.121.25391.3126.93091.75162.961
    AE⁃KELM94.232.01495.5238.23795.81720.834
    DAE⁃KELM96.454.58798.3145.41798.351 646.250
    Table 3. Test results of data sets for various KELM algorithm
    AlgorithmFeature extraction methodClassification algorithmAccuracy/%Standard deviation/%
    Ref. [6]AlexnetRandom forest85.934.24
    Ref. [7]CNN feature statisticsPW mean⁃shift91.251.82
    Ref. [8]Two layers CNNSVM89.062.95
    Ref. [9]Alexnet transfer learningRandom forest93.022.68
    ProposedDual⁃modality alexnet transfer learningAdaptive DAE⁃KELM96.831.96
    Table 4. Recognition effect of different methods
    Yi-peng LIAO, Jie-jie YANG, Zhi-gang WANG, Wei-xing WANG. Flotation Performance Recognition Based on Dual-modality Convolutional Neural Network Adaptive Transfer Learning[J]. Acta Photonica Sinica, 2020, 49(10): 1015001
    Download Citation