• Chinese Journal of Lasers
  • Vol. 51, Issue 17, 1704001 (2024)
Fasheng Qiu1,*, Dong Li2, Chaoyang Guo2, Shukun Xiao2..., Yuting Kang1, Zhongqi Hao1 and Wenze Shi1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, Jiangxi , China
  • 2Inspection and Testing Center of Jiangxi Hongdu Aviation Industry Group Co., Ltd., Nanchang 330096, Jiangxi , China
  • show less
    DOI: 10.3788/CJL231289 Cite this Article Set citation alerts
    Fasheng Qiu, Dong Li, Chaoyang Guo, Shukun Xiao, Yuting Kang, Zhongqi Hao, Wenze Shi. Stress Evaluation Based on Laser Ultrasonic Time‐Frequency Statistical Feature Fusion[J]. Chinese Journal of Lasers, 2024, 51(17): 1704001 Copy Citation Text show less
    References

    [1] Yin G L, Xu Z, Zhu T. Distributed real-time monitoring of residual stress during packaging process of optical fiber shape sensor[J]. Acta Optica Sinica, 42, 1606002(2022).

    [2] Jiang J T, Fan D G, Zhao X X et al. Whole process prediction-control of residual stress during the manufacturing of large aluminum alloy components[J]. Materials China, 41, 899-908(2022).

    [3] Wang H P, Dong L H, Wang H D et al. Effect of tensile stress on metal magnetic memory signals during on-line measurement in ferromagnetic steel[J]. NDT & E International, 117, 102378(2021).

    [4] Fagan P, Ducharne B, Daniel L et al. Effect of stress on the magnetic Barkhausen noise energy cycles: a route for stress evaluation in ferromagnetic materials[J]. Materials Science and Engineering: B, 278, 115650(2022).

    [5] Qiu F S. Research on magnetic domain wall dynamic behaviors for stress characterization[D](2019).

    [6] Xu C G, Li H X, Wang J F et al. Ultrasonic transverse and longitudinal wave detection method for residual stress[J]. Acta Acustica, 42, 195-204(2017).

    [7] Xu C G, Song W T, Pan Q X et al. Residual stress nondestructive testing method using ultrasonic[J]. Nondestructive Testing, 36, 25-31(2014).

    [8] Liu Z H, Liu S, Wu B et al. Experimental research on acoustoelastic effect of ultrasonic guided waves in prestressing steel strand[J]. Journal of Mechanical Engineering, 46, 22-27(2010).

    [9] Hu P, Ai L, Qiu Z Y et al. Laser ultrasonic nondestructive testing on metal additive manufacturing components[J]. Chinese Journal of Lasers, 49, 1402803(2022).

    [10] Chai Y W, Zou Y, Liu S H et al. Characterization of elastic modulus of laser cladding coatings using laser ultrasonic method[J]. Laser & Optoelectronics Progress, 59, 0114014(2022).

    [11] Pan Z X, Song J K, Gao Y K. Residual stress measurement of GH4169 superalloy based on laser ultrasonic method[J]. Chinese Quarterly of Mechanics, 42, 98-107(2021).

    [12] Ji B P, Cao J S, Huang G et al. New method for detecting steel strip stress distribution based on laser ultrasonic guided waves[J]. Chinese Journal of Lasers, 49, 0604001(2022).

    [13] Feng W W, Pan Y D, Ru D H et al. Residual stress in cast iron brake disc measured by laser-generated surface wave technique[J]. Materials for Mechanical Engineering, 42, 78-82(2018).

    [14] Lévesque D, Dubourg L, Blouin A. Laser ultrasonics for defect detection and residual stress measurement of friction stir welds[J]. Nondestructive Testing and Evaluation, 26, 319-333(2011).

    [15] Chen H, Dong J L, Chen X et al. Novel multi-parameter ultrasonic evaluation method for GH4169 grain size[J]. Journal of Mechanical Engineering, 54, 18-26(2018).

    [16] Deng F Y, Ding H, Hao R J. Fault diagnosis of rotating machinery based on residual neural network with multi-scale feature fusion[J]. Journal of Vibration and Shock, 40, 22-28, 35(2021).

    [17] Chen X, Wu G H, Chen H et al. A multi-parameter ultrasonic evaluation of mean grain size using optimization[J]. NDT & E International, 106, 10-17(2019).

    [18] Wan S K, Li X H, Yin Y J et al. Milling chatter detection by multi-feature fusion and AdaBoost-SVM[J]. Mechanical Systems and Signal Processing, 156, 107671(2021).

    [19] Fan L M, Hu H, Zhang X J et al. Magnetic anomaly detection using one-dimensional convolutional neural network with multi-feature fusion[J]. IEEE Sensors Journal, 22, 11637-11643(2022).

    [20] Ma Y Y. Study on laser opto-ultrasonic dual detection and its application of wire + arc additive manufacturing component[D](2023).

    [21] Song W Q, Ding Z W, Mao B N et al. Similar-signal recognition method for φ-OTDR systems based on multiscale feature fusion[J]. Chinese Journal of Lasers, 51, 0606001(2024).

    [22] Yin X H, Chen H C, Zhang H. Quantitative detection of multi⁃component rubber additives based on terahertz spectral data fusion[J]. Chinese Journal of Lasers, 51, 0514001(2024).

    [23] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 20, 273-297(1995).

    [24] Chen Y, Yan X, Zhang X et al. Surface-enhanced Raman spectroscopy quantitative analysis of polycyclic aromatic hydrocarbons based on support vector machine algorithm[J]. Chinese Journal of Lasers, 46, 0311005(2019).

    [25] Wang P, Wang Z H, Ni N. Identification of the lithology in tight sandstone reservoir in Sulige gas field based on SVM optimized by cross validation[J]. China’s Manganese Industry, 34, 53-56(2016).

    Fasheng Qiu, Dong Li, Chaoyang Guo, Shukun Xiao, Yuting Kang, Zhongqi Hao, Wenze Shi. Stress Evaluation Based on Laser Ultrasonic Time‐Frequency Statistical Feature Fusion[J]. Chinese Journal of Lasers, 2024, 51(17): 1704001
    Download Citation