[1] OKADA K, LI N, MATSUSHITA K, et al. A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802[J]. IEEE Journal of Solid-State Circuits, 2011, 46(12): 2988-3004.
[2] APPLEBY R, ANDERTON R N. Millimeter-wave and submillimeter-wave imaging for security and surveillance[J]. Proceedings of the IEEE, 2007, 95(8): 1683-1690. doi: 10.1109/JPROC.2007.898832.
[3] FRIEDERICH F, VON-SPIEGEL W, BAUER M, et al. THz active imaging systems with real-time capabilities[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 183-200. doi: 10.1109/TTHZ.2011.2159559.
[4] LIU H B, ZHONG H, KARPOWICZ N, et al. Terahertz spectroscopy and imaging for defense and security applications[J]. Proceedings of the IEEE, 2007, 95(8): 1514-1527. doi: 10.1109/JPROC.2007.898903.
[5] HU Peng, LEI Wenqiang, JIANG Yi, et al. Development of a 0.32 THz folded waveguide traveling wave tube[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2164-2169. doi: 10.1109/TED.2017.2787682.
[6] SHUR M. Terahertz technology: devices and applications[C]//Proceedings of the 35th European Solid-State Device Research Conference. Grenoble, France: IEEE, 2005: 13-21. doi: 10.1109/ESSDER.2005.1546574.
[7] MUELLER E R, HENSCHKE R, ROBOTHAM W E J, et al. Terahertz local oscillator for the microwave limb sounder on the aura satellite[J]. Applied Optics, 2007, 46(22): 4907-4915. doi: 10.1364/ao.46.004907.
[8] BOOSKE J H, DOBBS R J, JOYE C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610.
[9] EISELE H. State of the art and future of electronic sources at terahertz frequencies[J]. Electronics Letters, 2010, 46(26): S8-S11. doi: 10.1049/el.2010.3319.
[10] SMITH P M, LIU S M J, KAO M Y, et al. W-band high efficiency InP-based power HEMT with 600 GHz fmax[J]. IEEE Microwave and Guided Wave Letters, 1995, 5(7): 230-232. doi: 10.1109/75.392284.
[11] HAFEZ W, FENG M. Experimental demonstration of pseudomorphic heterojunction bipolar transistors with cutoff frequencies above 600 GHz[J]. Applied Physics Letters, 2005, 86(15): 152101. doi: 10.1063/1.1897831.
[12] RODWELL M J W. High-speed integrated circuit technology: towards 100 GHz logic[M]. Singapore, River Edge, NJ: World Scientific, 2001. doi: 10.1142/4716.
[13] GATILOVA L, MAESTRINI A, TREUTTEL J, et al. Recent progress in the development of French THz Schottky diodes for astrophysics, planetology and atmospheric study[C]//2019 the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France: IEEE, 2019: 1-2. doi: 10.1109/IRMMW-THz.2019.8873728.
[14] JAYASANKAR D, DRAKINSKIY V, MYREMARK M, et al. Design and development of 3.5 THz Schottky-based fundamental mixer[C]//2020 the 50th European Microwave Conference (EuMC). Utrecht, Netherlands: IEEE, 2021: 595-598. doi: 10.23919/EuMC48046.2021.9338204.
[15] MAESTRINI A, MEHDI I, SILES J V, et al. Frequency tunable electronic sources working at room temperature in the 1 to 3 THz band[J]. Proceedings of SPIE, 2012(8496): 84960F. doi: 10.1117/12.929654.
[16] TREUTTEL J, GATILOVA L, MAESTRINI A, et al. A 520~620-GHz Schottky receiver Front-End for planetary science and remote sensing with 1 070 K-1 500 K DSB noise temperature at room temperature[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(1): 148-155. doi: 10.1109/TTHZ.2015.2496421.
[17] SCHLECHT E, SILES J V, LEE C, et al. Schottky diode based 1.2 THz receivers operating at room-temperature and below for planetary atmospheric sounding[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(6): 661-669. doi: 10.1109/TTHZ.2014.2361621.
[18] MAESTRINI A, GATILOVA L, TREUTTEL J, et al. The 1 200 GHz receiver frontend of the submillimetre wave instrument of ESA Jupiter ICy moons explorer[C]//2018 the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Nagoya, Japan: IEEE, 2018: 1-2. doi: 10.1109/IRMMW-THz.2018.8509935.
[19] SCHOTTKY W. Zur halbleitertheorie der sperrschicht-und spitzengleichrichter[J]. Zeitschrift fr Physik, 1939, 113(5): 367-414. doi: 10.1007/BF01340116.
[20] SENGUPTA D L, SARKAR T K, SEN D. Centennial of the semiconductor diode detector[J]. Proceedings of the IEEE, 1998, 86(1): 235-243. doi: 10.1109/5.658775.
[22] BISHOP W L, MCKINNEY K, MATTAUCH R J, et al. A novel whiskerless Schottky diode for millimeter and submillimeter wave application[C]//1987 IEEE MTT-S International Microwave Symposium Digest. Palo Alto, CA, USA: IEEE, 1987: 607-610. doi: 10.1109/MWSYM.1987.1132483.
[23] MARTIN S, NAKAMURA B, FUNG A, et al. Fabrication of 200 to 2 700 GHz multiplier devices using GaAs and metal membranes[J]. 2001 IEEE MTT-S International Microwave Sympsoium Digest, 2001(3): 1641-1644. doi: 10.1109/MWSYM.2001.967219.
[24] KOU W, LIANG S, ZHOU H, et al. A review of terahertz sources based on planar Schottky diodes[J]. Chinese Journal of Electronics, 2022, 31(3): 467-487. doi: 10.1049/cje.2021.00.302.
[25] SILES J V. Design and optimization of frequency multipliers and mixers at millimeter and submillimeter-wave bands[D]. Espaa: Universidad Politcnica de Madrid, 2008.
[28] LI Qian, AN Ning, TONG Xiaodong, et al. Planar Schottky barrier diode with a cutoff frequency of 8.7 THz[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(5): 679-683. doi: 10.11805/TKYDA201505.0679.
[29] LIANG Shixiong, XING Dong, WANG Junlong, et al. Terahertz Schottky barrier diodes based on homoepitaxial GaN materials[C]//2015 the 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Hong Kong, China: IEEE, 2015: 1-2. doi: 10.1109/IRMMW THz.2015.7327726.
[30] LIANG Shixiong, GU Guodong, GUO Hongyu, et al. Homoepitaxial GaN terahertz planar Schottky barrier diodes[J]. Journal of Physics D: Applied Physics, 2022, 55(48): 484004.
[31] DI GIOIA G, SAMNOUNI M, CHINNI V, et al. GaN Schottky diode on sapphire substrate for THz frequency multiplier applications[J]. Micro and Nanostructures, 2022(164): 107116. doi: 10.1016/j.spmi.2021.107116.
[32] DI GIOIA G, FRAYSSINET E, SAMNOUNI M, et al. High breakdown voltage GaN Schottky diodes for THz frequency multipliers[J]. Journal of Electronic Materials, 2023, 52(8): 5249-5255. doi: 10.1007/s11664-023-10499-3.
[34] PORTERFIELD D W. High-efficiency terahertz frequency triplers[C]//2007 IEEE/MTT-S International Microwave Symposium. Honolulu, HI, USA: IEEE, 2007: 337-340. doi: 10.1109/MWSYM.2007.380439.
[36] CHEN Z, WANG H, ALDERMAN B, et al. 190 GHz high power input frequency doubler based on Schottky diodes and AlN substrate[J]. IEICE Electronics Express, 2016, 13(22): 20160981. doi: 10.1587/elex.13.20160981.
[37] WU Chengkai, ZHANG Yong, LI Yukun, et al. A balanced frequency doubler covering 140~220 GHz with an efficiency of 6.8%~11.6%[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(8): 1003-1006. doi: 10.1109/LMWC.2022.3160707.
[38] WANG Li, ZHANG Dehai, MENG Jin, et al. A high efficiency and high power 165~180 GHz balanced doubler based on Schottky diode[J]. Microelectronics Journal, 2023(140): 105924. doi: 10.1016/j.mejo.2023.105924.
[39] WANG H, PARDO D, MERRITT M, et al. 280 GHz frequency multiplied source for meteorological Doppler radar applications[C]//2015 the 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT). Cardiff, UK: IEEE, 2015: 1-4. doi: 10.1109/UCMMT.2015.7460628.
[40] MENG Jin, ZHANG Dehai, YAO Changfei, et al. Design of a 225 GHz high output power tripler based on unbalanced structure[J]. Progress in Electromagnetics Research C, 2015(56): 101-108. doi: 10.2528/PIERC15012001.
[41] GUO C, SHANG X B, LANCASTER M J, et al. A 135~150-GHz frequency tripler with waveguide filter matching[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(10): 4608-4616. doi: 10.1109/TMTT.2018.2855172.
[42] GUO C, DHAYALAN Y, SHANG X B, et al. A 135~150-GHz frequency tripler using SU-8 micromachined WR-5 waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 1035-1044. doi: 10.1109/TMTT.2019.2955684.
[43] LI Yuhang, ZHANG Dehai, MENG Jin, et al. 335 GHz unbalanced Schottky diode frequency tripler[J]. Journal of Infrared and Millimeter Waves, 2023, 42(2): 230-233. doi: 10.11972/j.issn.1001-9014.2023.02.013.
[44] SCHLECHT E, CHATTOPADHYAY G, MAESTRINI A, et al. 200, 400 and 800 GHz Schottky diode "substrateless" multipliers: design and results[C]//2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157). Phoenix, AZ, USA: IEEE, 2001: 1649-1652. doi: 10.1109/MWSYM.2001.967221.
[45] HENRY M, ALDERMAN B, SANGHERA H, et al. High-efficiency transferred substrate GaAs varactor multipliers for the terahertz spectrum[C]//Proceedings of SPIE-The International Society for Optical Engineering. Orlando, Florida, United States: SPIE, 2010: 76710U. doi: 10.1117/12.850205/.
[46] COJOCARI O, OPREA I, GIBSON H, et al. SubMM-wave multipliers by film-diode technology[C]//2016 the 46th European Microwave Conference (EuMC). London, UK: IEEE, 2016: 337-340. doi: 10.1109/EuMC.2016.7824347.
[47] MONTERO-DE-PAZ J, SOBORNYTSKYY M, HOEFLE M, et al. High power 150 GHz Schottky based varactor doubler[C]//2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications. Espoo, Finland: IEEE, 2016: 1-4. doi: 10.1109/GSMM.2016.7500328.
[48] KIURU T, MALLAT J, RISNEN A V, et al. Compact broadband MMIC Schottky frequency tripler for 75~140 GHz[C]//2011 the 6th European Microwave Integrated Circuit Conference. Manchester, UK: IEEE, 2011: 108-111.
[49] KIURU T, DAHLBERG K, MALLAT J, et al. Schottky frequency doubler for 140~220 GHz using MMIC foundry process[C]//2012 the 7th European Microwave Integrated Circuit Conference. Amsterdam, Netherlands: IEEE, 2012: 84-87.
[50] DRAKINSKIY V, SOBIS P, ZHAO H, et al. Terahertz GaAs Schottky diode mixer and multiplier MIC's based on e-beam technology[C]//2013 International Conference on Indium Phosphide and Related Materials (IPRM). Kobe, Japan: IEEE, 2013: 1-2. doi: 10.1109/ICIPRM.2013.6562606.
[51] YANG F, TREUTTEL J, MAESTRINI A, et al. Solid state 448 GHz frequency doubler using intergrated Schottky membrane technology[C]//2013 Asia-Pacific Microwave Conference Proceedings (APMC). Seoul, Korea (South): IEEE, 2013: 833-835. doi: 10.1109/APMC.2013.6694949.
[52] SILES J V, SCHLECHT E, LIN R, et al. High-efficiency planar Schottky diode based submillimeter-wave frequency multipliers optimized for high-power operation[C]//2015 the 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Hong Kong, China: IEEE, 2015: 1-1. doi: 10.1109/IRMMW-THz.2015.7327677.
[53] KOU Wei, ZHOU Hongji, LIANG Shixiong, et al. Terahertz frequency quadrupler based on a 2×2 single-chip GaAs monolithic integration[C]//2021 IEEE the 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Helsinki, Finland: IEEE, 2021: 1-6. doi: 10.1109/PIMRC50174.2021.9569614.
[55] JI Dongfeng, WANG Dongshuang, DAI Kunpeng, et al. A terahertz broadband tripler using Schottky diode and monolithic integrated technology[C]//2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Chengdu, China: IEEE, 2023: 1-3. doi: 10.1109/IMWS-AMP57814.2023.10381278.
[57] JOHNSON W C, PARSONS J B. The preparation of gallium tribromide and gallium triiodide[J]. The Journal of Physical Chemistry, 2002, 34(6): 1210-1214. doi: 10.1021/j150312a007.
[58] JOHNSON W C, PARSONS J B. Nitrogen compounds of gallium. I, II[J]. The Journal of Physical Chemistry, 2002, 36(10): 2588-2594.
[59] AMANO H, KITO M, HIRAMATSU K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Japanese Journal of Applied Physics, 1989, 28 (12): L2112-L2114.
[60] PEARTON S J, REN F, ZHANG A, et al. Fabrication and performance of GaN electronic devices[J]. Materials Science and Engineering R: Reports, 2000(30): 55-212. doi: 10.1016/S0927-796X(00)00028-0.
[61] MARGOMENOS A, KURDOGHLIAN A, MICOVIC M, et al. GaN technology for E, W and G-band applications[C]//2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). La Jolla, CA, USA: IEEE, 2014: 1-4. doi: 10.1109/CSICS.2014.6978559.
[62] SCHELLENBERG J M. A 2 W W-band GaN traveling-wave amplifier with 25-GHz bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(9): 2833-2840. doi: 10.1109/TMTT.2015.2453156.
[63] PEARTON S J, ZOLPER J C, SHUL R J, et al. GaN: processing, defects, and devices[J]. Journal of Applied Physics, 1999, 86(1): 1-78. doi: 10.1063/1.371145.
[64] FENG Z H, LIANG S X, XING D, et al. High-frequency multiplier based on GaN planar Schottky barrier diodes[C]//2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Chengdu, China: IEEE, 2016: 1-3. doi: 10.1109/IMWS-AMP.2016.7588336.
[65] ZHANG Bo, JI Dongfeng, FANG Deng, et al. A novel 220-GHz GaN diode on-chip tripler with high driven power[J]. IEEE Electron Device Letters, 2019, 40(5): 780-783. doi: 10.1109/LED.2019.2903430.
[66] LIANG Shixiong, SONG Xubo, ZHANG Lisen, et al. A 177~183 GHz high-power GaN-based frequency doubler with over 200 mW output power[J]. IEEE Electron Device Letters, 2020, 41(5): 669-672. doi: 10.1109/LED.2020.2981939.
[67] ZHANG Lisen, LIANG Shixiong, LYU Yuanjie, et al. High-power 300 GHz solid-state source chain based on GaN doublers[J]. IEEE Electron Device Letters, 2021, 42(11): 1588-1591. doi: 10.1109/LED.2021.3110781.
[69] AN Ning, LI Li, WANG Weiguang, et al. High-efficiency D-band monolithically integrated GaN SBD-based frequency doubler with high power handling capability[J]. IEEE Transactions on Electron Devices, 2022, 69(9): 4843-4847. doi: 10.1109/TED.2022.3190463.
[70] SONG Xubo, LIANG Shixiong, LYU Yuanjie, et al. GaN-based frequency doubler with pulsed output power over 1 W at 216 GHz[J]. IEEE Electron Device Letters, 2021, 42(12): 1739-1742. doi: 10.1109/LED.2021.3119391.
[71] LIU Honghui, LIANG Zhiwen, MENG Jin, et al. 120 GHz frequency-doubler module based on GaN Schottky barrier diode[J]. Micromachines, 2022, 13(8): 1172. doi: 10.3390/mi13081172.
[72] DONG Yazhou, LIANG Huajie, LIANG Shixiong, et al. High-efficiency GaN frequency doubler based on thermal resistance analysis for continuous wave input[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4565-4571. doi: 10.1109/TED.2023.3294897.
[73] ZHANG Lisen, GU Guodong, LIANG Shixiong, et al. High-efficiency GaN/SiC doubler terahertz monolithic integrated circuit at 175 GHz[J]. IEEE Electron Device Letters, 2023, 44(3): 376-379. doi: 10.1109/LED.2023.3239653.
[74] LIANG Zhiwen, LIU Honghui, MENG Jin, et al. Monolithic integrated GaN-based 120 GHz frequency doubler on sapphire[J]. Journal of Physics D: Applied Physics, 2023, 56(42): 425104.
[75] SILES J V, LEE C, LIN R, et al. Capability of broadband solid-state room-temperature coherent sources in the terahertz range[C]//2014 the 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Tucson, AZ, USA: IEEE, 2014: 1-3. doi: 10.1109/IRMMW-THz.2014.6956427.
[76] CROWE T W, HESLER J L, RETZLOFF S A, et al. Higher power terahertz sources based on diode multipliers[C]//2017 the 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Cancun, Mexico: IEEE, 2017: 1-1. doi: 10.1109/IRMMW-THz.2017.8067091.
[77] VIEGAS C, LIU H R, POWELL J, et al. A 180-GHz Schottky diode frequency doubler with counter-rotated E-fields to provide in-phase power-combining[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6): 518-520. doi: 10.1109/LMWC.2018.2824561.
[78] DING J Q, MAESTRINI A, GATILOVA L, et al. A 300 GHz power-combined frequency doubler based on E-plane 90°-hybrid and Y-junction[J]. Microwave and Optical Technology Letters, 2020, 62(8): 2683-2691. doi: 10.1002/mop.32146.
[79] DING J Q, MAESTRINI A, GATILOVA L, et al. High efficiency and powerful 260~340 GHz frequency doublers based on Schottky diodes[C]//2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. Rome, Italy: IEEE, 2020: 1-4. doi: 10.23919/URSIGASS49373.2020.9232347.
[80] WANG Li, ZHANG Dehai, MENG Jin, et al. A high-power 170 GHz in-phase power-combing frequency doubler based on Schottky diodes[J]. Micromachines, 2023, 14(8): 1530. doi: 10.3390/mi14081530.
[81] COHN M, DEGENFORD J E, NEWMAN B A. Harmonic mixing with an antiparallel diode pair[J]. IEEE Transactions on Microwave Theory and Techniques, 1975, 23(8): 667-673. doi: 10.1109/TMTT.1975.1128646.
[82] BULCHA B T, KURTZ D S, GROPPI C, et al. THz Schottky diode harmonic mixers for QCL phase-locking[C]//2013 the 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Mainz, Germany: IEEE, 2013: 1-2. doi: 10.1109/IRMMW-THz.2013.6665858.
[83] PARDO D, ELLISON B N, HUGGARD P G, et al. Development of techniques for the design of a 3.5 THz fundamental balanced Schottky heterodyne mixer[C]//2018 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC). Brive La Gaillarde, France: IEEE, 2018: 1-3. doi: 10.1109/INMMIC.2018.8430018.
[84] YANG Yilin, ZHANG Bo, JI Dongfeng, et al. Development of a wideband 220-GHz subharmonic mixer based on GaAs monolithic integration technology[J]. IEEE Access, 2020(8): 31214-31226. doi: 10.1109/ACCESS.2020.2973399.
[85] PREZ-ESCUDERO J M, QUEMADA C, GONZALO R, et al. A millimeter-wave 4th-harmonic Schottky diode mixer with integrated local oscillator[J]. Applied Sciences, 2021, 11(16): 7238. doi: 10.3390/app11167238.
[86] FENG Wei, YANG Penglin, SUN Xuechun, et al. Development of 0.34 THz sub-harmonic mixer combining two-stage reduced matching technology with an improved active circuit model[J]. Applied Sciences, 2022, 12(24): 12855. doi: 10.3390/app122412855.
[87] HE Yue, LI Li, LIU Ge, et al. A 1 THz Schottky transceiver front-end based on 5 m GaAs monolithic membrane[J]. Microwave and Optical Technology Letters, 2022, 64(12): 2143-2150. doi: 10.1002/mop.33424.
[88] YU Bo, WANG Zhigang, ZHANG Haihui, et al. A 0.2 THz sub-harmonic mixer with vertical waveguides for 3D integrated systems[C]//2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Harbin, China: IEEE, 2022: 1-3. doi: 10.1109/ICMMT55580.2022.10023360.
[89] LIU Songzhuo, NIU Bin, WANG Bowu, et al. A 340 GHz upconversion mixer MMIC using an antiparallel series Schottky diode pair with high output power[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(7): 927-930. doi: 10.1109/LMWT.2024.3401579.
[90] THOMAS B, REA S, MOYNA B, et al. A 320~360 GHz subharmonically pumped image rejection mixer using planar Schottky diodes[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2): 101-103. doi: 10.1109/LMWC.2008.2011332.
[91] MONASTERIO D, JARUFE C, GALLARDO D, et al. A compact sideband separating downconverter with excellent return loss and good conversion gain for the W band[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(6): 572-580. doi: 10.1109/TTHZ.2019.2937955.