• Frontiers of Optoelectronics
  • Vol. 15, Issue 1, 12200 (2022)
Shengping Liu, Junbo Feng*, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, and Jin Guo
Author Affiliations
  • Chongqing United Microelectronics Center, Chongqing 401332, China
  • show less
    DOI: 10.1007/s12200-022-00012-9 Cite this Article
    Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200 Copy Citation Text show less
    References

    [1] Su, Y., Zhang, Y., Qiu, C., Guo, X., Sun, L.: Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Adv. Mater. Technol. 5(8), 1901153 (2020)

    [2] Rahim, A., Spuesens, T., Baets, R., Bogaerts, W.: Open-access silicon photonics: current status and emerging initiatives. In: Proceedings of the IEEE, pp. 2313–2330. (2018)

    [3] Rahim, A., Goyvaerts, J., Szelag, B., Fedeli, J.-M., Absil, P., Aalto, T., Harjanne, M., Littlejohns, C., Reed, G., Winzer, G., Lischke, S., Zimmermann, L., Knoll, D., Geuzebroek, D., Leinse, A., Geiselmann, M., Zervas, M., Jans, H., Stassen, A., Domínguez, C., Munoz, P., Domenech, D., Lena, A., Lemme, M.C., Baets, R.: Open-access silicon photonics platforms in europe. IEEE J. Sel. Top. Quantum Electron. 25(5), 1–18 (2019)

    [4] Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D., Soljacic, M.: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11(7), 441–446 (2017)

    [5] Bogaerts, W., Rahim, A.: Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. (2020)

    [6] Baghdadi, R., Gould, M., Gupta, S., Tymchenko, M., Bunandar, D., Ramey, C., Harris, N.C.: Dual slot-mode NOEM phase shifter. Opt. Express 29(12), 19113–19119 (2021)

    [7] Kang, G., Kim, S.H., You, J.B., Lee, D.S., Yoo, H., Ha, Y.G., Kim, J.H., Yoo, D.E., Lee, D.W., Youn, C.H., Yu, K.: Silicon-based optical phased array using electro-optic p-i-n phase shifters. IEEE Photonics Technol. Lett. 31, 1685–1688 (2019)

    [8] Quack, N., Sattari, H., Takabayashi, A.Y., Zhang, Y., Verheyen, P., Bogaerts, W., Edinger, P., Errando-Herranz, C., Gylfason, K.B.: MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56(1), 1–10 (2020)

    [9] Yamashita, T., Kim, S., Kato, H., Qiu, W., Semba, K., Fujimaki, A., Terai, H.: π phase shifter based on NbN-based ferromagnetic Josephson junction on a silicon substrate. Sci. Rep. 10(1), 13687 (2020)

    [10] Landry, A., Son, T.V., Haché, A.: Optical modulation at the interface between silicon and a phase change material. Optik (Stuttgart) 209(6), 164585 (2020)

    [11] Kieninger, C., Füllner, C., Zwickel, H., Kutuvantavida, Y., Kemal, J.N., Eschenbaum, C., Elder, D.L., Dalton, L.R., Freude, W., Randel, S., Koos, C.: Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phaseshifter loss. Opt. Express 28(17), 24693–24707 (2020)

    [12] Xie, Y., Shi, Y., Liu, L., Wang, J., Priti, R., Zhang, G., Liboiron-Ladouceur, O., Dai, D.: Thermally-reconfigurable silicon photonic devices and circuits. IEEE J. Sel. Top. Quantum Electron. 26(5), 1–20 (2020)

    [13] Qiao, L., Tang, W., Chu, T.: 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7(1), 42306 (2017)

    [14] Edinger, P., Errando-Herranz, C., Gylfason, K.B.: Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE (2019)

    [15] Jacques, M., Samani, A., El-Fiky, E., Patel, D., Xing, Z., Plant, D.V.: Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express 27(8), 10456–10471 (2019)

    [16] Campenhout, J.V., Green, W., Assefa, S., Vlasov, Y.A.: Integrated NiSi waveguide heaters for CMOS-compatible silicon thermooptic devices. Opt. Lett. 35(7), 1013–1015 (2010)

    [17] Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Largescale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12(9), 534–539 (2018)

    [18] Priti, R.B., Liboiron-Ladouceur, O.: A broadband rearrangeable nonblocking MZI-based thermo-optic O-band switch in the silicon-oninsulator. In: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS). Optical Society of America, PM4D–2 (2017)

    [19] Horst, F., Green, W.M., Assefa, S., Shank, S.M., Vlasov, Y.A., Offrein, B.J.: Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express 21(10), 11652–11658 (2013)

    [20] Zhuang, L., Zhu, C., Xie, Y., Burla, M., Roeloffzen, C.G.H., Hoekman, M., Corcoran, B., Lowery, A.J.: Nyquist-filtering (de) multiplexer using ring resonator assisted interferometer circuit. J. Lightwave Technol. 34(8), 1732–1738 (2016)

    [21] Yu, L., Yin, Y., Shi, Y., Dai, D., He, S.: Thermally tunable silicon photonics microdisk resonator with graphene transparent nanoheaters. Optica 3(2), 159–166 (2016)

    [22] Guha, B., Cardenas, J., Lipson, M.: Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21(22), 26557–26563 (2013)

    [23] Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., Cheng, Q., Bergman, K.: Thermal rectification of integrated micro heaters for microring resonators in silicon photonics platform. J. Lightwave Technol. 36(3), 773–788 (2018)

    [24] Pintus, P., Hofbauer, M., Manganelli, C.L., Fournier, M., Gundavarapu, S., Lemonnier, O., Gambini, F., Adelmini, L., Meinhart, C., Kopp, C., Testa, F., Zimmermann, H., Oton, C.J.: PWM-driven thermally tunable silicon microring resonators: design, fabrication, and characterization. Laser Photonics Rev. 13(9), 1800275 (2019)

    [25] DeRose, C.T., Kekatpure, R.D., Trotter, D.C., Starbuck, A., Wendt, J.R., Yaacobi, A., Watts, M.R., Chettiar, U., Engheta, N., Davids, P.S.: Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt. Express 21(4), 5198–5208 (2013)

    [26] Sun, J., Timurdogan, E., Yaacobi, A., Zhan, S., Hosseini, E.S., Cole, D.B., Watts, M.R.: Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014)

    [27] Huang, C., Jha, A., Lima, T.F., Tait, A.N., Shastri, B.J., Prucnal, P.R.: On-chip programmable nonlinear optical signal processor and its applications. IEEE J. Sel. Top. Quantum Electron. 99, 1–11 (2020)

    [28] Sugita, A., Jinguji, K., Takato, N., Katoh, K., Kawachi, M.: Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach–Zehnder type optical switch. IEICE Trans. (1976–1990) 73(1), 105–109 (1990)

    [29] Gu, J., Zhao, Z., Feng, C., Liu, M., Chen, R.T., Pan, D.Z.: Towards area-efficient optical neural networks: an FFT-based architecture. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 476–481. IEEE (2020)

    [30] Pour Fard, M.M., Williamson, I.A.D., Edwards, M., Liu, K., Pai, S., Bartlett, B., Minkov, M., Hughes, T.W., Fan, S., Nguyen, T.A.: Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express 28(8), 12138–12148 (2020)

    [31] Qin, G., Zhu, Q., Su, Y.: Fast wavelength seeking in a silicon dual-ring switch based on artificial neural networks. J. Lightwave Technol. 38(18), 5078–5085 (2020)

    [32] Wang, J., Bonneau, D., Villa, M., Silverstone, J.W., Santagati, R., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3(4), 407–413 (2016)

    [33] Wang, J., Paesani, S., Ding, Y., Santagati, R., Skrzypczyk, P., Salavrakos, A., Tura, J., Augusiak, R., Mancinska, L., Bacco, D., Bonneau, D., Silverstone, J.W., Gong, Q., Acín, A., Rottwitt, K., Oxenlowe, L.K., O’Brien, J.L., Laing, A., Thompson, M.G.: Multidimensional quantum entanglement with large-scale integrated optics. Science 360(6386), 285–291 (2018)

    [34] Silverstone, J.W., Bonneau, D., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Zwiller, V., Marshall, G.D., Rarity, J.G., O’Brien, J.L., Thompson, M.G.: On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8(2), 104–108 (2014)

    [35] Chung, S.W., Abediasl, H., Hashemi, H.: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 53(1), 275–296 (2018)

    [36] Van Acoleyen, K., Bogaerts, W., Jágerská, J., Le Thomas, N., Houdré, R., Baets, R.: Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 34(9), 1477–1479 (2009)

    [37] Chen, S., Shi, Y., He, S., Dai, D.: Compact 8-channel thermally reconfigurable optical add/drop multiplexer on silicon. IEEE Photonics Technol. Lett. 28(17), 1874–1877 (2016)

    [38] Bogaerts, W., Pérez, D., Capmany, J., Miller, D.A.B., Poon, J., Englund, D., Morichetti, F., Melloni, A.: Programmable photonic circuits. Nature 586(7828), 207–216 (2020)

    [39] Pérez-López, D., López, A., DasMahapatra, P., Capmany, J.: Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 11(1), 6359 (2020)

    [40] Liao, S., Ding, Y., Peucheret, C., Yang, T., Dong, J., Zhang, X.: Integrated programmable photonic filter on the silicon-on-insulator platform. Opt. Express 22(26), 31993–31998 (2014)

    [41] Xie, Y., Zhuang, L., Boller, K.J., Lowery, A.J.: Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier. J. Opt. 19(6), 065802 (2017)

    [42] Hashizume, Y., Katayose, S., Tsuchizawa, T., Watanabe, T., Itoh, M.: Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures. Electron. Lett. 48(19), 1234–1235 (2012)

    [43] Densmore, A., Janz, S., Ma, R., Schmid, J.H., Xu, D.X., Delage, A., Lapointe, J., Vachon, M., Cheben, P.: Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Express 17(13), 10457 (2009)

    [44] Smith, F., Wang, W., Wang, X., Li, Y., Cheng, X., Wu, H.: A design study of efficiency enhancement in silicon photonic thermo-optic phase shifters. In: 2019 IEEE Optical Interconnects Conference (OI). IEEE (2019)

    [45] Passaro, V., Magno, F., Tsarev, A.: Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. Opt. Express 13(9), 3429–3437 (2005)

    [46] De, S., Das, R., Varshney, R.K., Schneider, T.: Design and simulation of thermo-optic phase shifters with low thermal crosstalk for dense photonic integration. IEEE Access: Pract. Innov. Open Solut. 8, 141632–141640 (2020)

    [47] Giuseppe, C., Luigi, S., Ivo, R.: Advance in thermo-optical switches: principles, materials, design, and device structure. Opt. Eng. (Redondo Beach, Calif.) 50(7), 071112 (2011)

    [48] Watts, M.R., Sun, J., DeRose, C., Trotter, D.C., Young, R.W., Nielson, G.N.: Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38(5), 733–735 (2013)

    [49] Liu, S., Tian, Y., Li, Y., Feng, G., Guo, J.: Comparison of thermos-optic phase-shifters implemented on CUMEC silicon photonics platform. In: Seventh Symposium on Novel Photoelectronic Detection Technology and Application. (2020)

    [50] Masood, A., Pantouvaki, M., Lepage, G., Verheyen, P., Van Campenhout, J., Absil, P., Van Thourhout, D., Bogaerts, W.: Comparison of heater architecture for thermal control of silicon photonics circuits. In: IEEE 10th International Conference on Group IV Photonics. IEEE (2013)

    [51] Harris, N.C., Ma, Y., Mower, J., Baehr-Jones, T., Englund, D., Hochberg, M., Galland, C.: Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22(9), 10487–10493 (2014)

    [52] Fang, Q., Song, J.F., Liow, T.Y., Cai, H., Yu, M.B., Lo, G.Q., Kwong, D.L.: Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol. Lett. 23(8), 525–527 (2011)

    [53] Lu, Z., Murray, K., Jayatilleka, H., Chrostowski, L.: Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption. In: 2016 IEEE Photonics Conference (IPC). IEEE (2016)

    [54] Sun, P., Reano, R.M.: Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18(8), 8406–8411 (2010)

    [55] Yu, H., Ying, D., Pantouvaki, M., Van Campenhout, J., Absil, P., Hao, Y., Yang, J., Jiang, X.: Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express 22(12), 15178–15189 (2014)

    [56] Song, J., Fang, Q., Tao, S.H., Liow, T.Y., Yu, M.B., Lo, G.Q., Kwong, D.L.: Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt. Express 16(20), 15304–15311 (2008)

    [57] Celo, D., Goodwill, D.J., Jiang, J., Dumais, P., Li, M., Bernier, E.: Thermo-optic silicon photonics with low power and extreme resilience to over-drive. In: 2016 IEEE Optical Interconnects Conference (OI). IEEE (2016)

    [58] Murray, K., Lu, Z., Jayatilleka, H., Chrostowski, L.: Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt. Express 23(15), 19575–19585 (2015)

    [59] Chung, S., Nakai, M., Hashemi, H.: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 27(9), 13430–13459 (2019)

    [60] Qiu, H., Liu, Y., Luan, C., Kong, D., Guan, X., Ding, Y., Hu, H.: Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 45(17), 4806–4809 (2020)

    [61] Miller, S.A., Chang, Y.C., Phare, C.T., Shin, M.C., Zadka, M., Roberts, S.P., Stern, B., Ji, X., Mohanty, A., Jimenez Gordillo, O.A., Dave, U.D., Lipson, M.: Large-scale optical phased array using a low-power multi-pass silicon platform. Optica 7(1), 3–6 (2020)

    [62] Alves, A.R., Declercq, S., Khan, M.U., Wang, M., Van Iseghem, L., Bogaerts, W.: Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron. https:// doi. org/ 10. 1109/ JSTQE. 2020. 29756 69 (2020)

    Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200
    Download Citation