[1] 冯玉涛, 李娟, 赵增亮, 等. 大气风场探测星载干涉光谱技术进展综述[J]. 上海航天, 2017, 34(3): 14-26.FENGY T, LIJ, ZHAOZ L, et al. Development of interferometric spectroscopy for atmosphere wind observations based on satellite[J]. Aerospace Shanghai, 2017, 34(3): 14-26.(in Chinese)
[2] 肖旸, 冯玉涛, 文镇清, 等. 中高层大气风场探测多普勒差分干涉技术(特邀)[J]. 光子学报, 2022, 51(8): 0851516.XIAOY, FENGY T, WENZ Q, et al. Doppler asymmetric spatial heterodyne interferometry for wind measurement in middle and upper atmosphere(invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851516.(in Chinese)
[3] B W SMITH, J M HARLANDER. Imaging Spatial Heterodyne Spectroscopy: Theory and Practice, 925-931(1999).
[4] F L ROESLER, J M HARLANDER. Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning, 234(1990).
[5] B LAUBSCHER, B W SMITH, B J COOKE et al. Infrared imaging spatial heterodyne spectrometer (IRISHS) experiment effort, 194-205(1999).
[6] D D BABCOCK. Spatial heterodyne spectroscopy for long-wave infrared: first measurements of broadband spectra. Optical Engineering, 48, 105602(2009).
[7] B SOLHEIM, S BROWN, C SIORIS et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement. Atmosphere-Ocean, 53, 50-57(2015).
[8] 刘祥意, 张景旭, 乔兵, 等. 应用于冷光学组件的透镜支撑技术研究[J]. 光学 精密工程, 2017, 25(7): 1850.LIUX Y, ZHANGJ X, QIAOB, et al. Research on supporting technology of lens applied in cold optics assembly[J]. Opt. Precision Eng., 2017, 25(7): 1850.(in Chinese)
[9] Y F ZHANG, Y T FENG, D FU et al. Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy. Chinese Physics B, 29, 298-303(2020).
[10] 周冠, 李立波, 傅頔, 等. 多普勒差分干涉仪干涉图畸变对相位反演精度影响分析[J]. 光子学报, 2022, 51(6): 0601001.ZHOUG, LIL B, FUD, et al. Analysis of influence of Doppler asymmetric spatial heterodyne interferogram distortion on phase inversion accuracy[J]. Acta Photonica Sinica, 2022, 51(6): 0601001.(in Chinese)
[11] 吴长坤, 张为, 郝亚喆. 可见/近红外实时成像光谱仪控制系统设计[J]. 中国光学, 2022, 15(2): 348-354. doi: 10.37188/co.2021-0119WUC K, ZHANGW, HAOY Z. Design of a control system for a visible/near-infrared real-time imaging spectrometer[J]. Chinese Optics, 2022, 15(2): 348-354.(in Chinese). doi: 10.37188/co.2021-0119
[12] B MOON, W S WANG, C PARK et al. Immersion grating mount design for IGRINS and GMTNIRS, 1372-1379(2012).
[13] J GRANT, T WOOD, I BHATTI et al. Cryogenic optical mounting for short-wave infrared spectrometers, 1341-1358(2014).
[14] 李文雄, 申军立, 张星祥, 等. 低温红外离轴三反准直系统设计[J]. 光学 精密工程, 2023, 31(9): 1285-1294. doi: 10.37188/OPE.20233109.1285LIW X, SHENJ L, ZHANGX X, et al. Design of low temperature infrared off-axis three-mirror collimation system[J]. Opt. Precision Eng., 2023, 31(9): 1285-1294.(in Chinese). doi: 10.37188/OPE.20233109.1285
[15] 沈凯, 何欣, 张星祥. 低温反射镜组件结构设计与支撑特性分析[J]. 红外技术, 2021, 43(12): 1172-1176.SHENK, HEX, ZHANGX X. Structural design and support characteristics analysis of cryogenic mirror assembly[J]. Infrared Technology, 2021, 43(12): 1172-1176.(in Chinese)
[16] W PARK, S KIM, C PARK et al. GMTNIRS: preliminary optical mount design for cryogenic spectrograph, 17, 98(2022).
[17] 葛桓宇, 肖正航, 王跃. 基于热变形补偿的双材料低温镜头支撑结构研究[J]. 航天返回与遥感, 2022, 43(3): 69-76. doi: 10.3969/j.issn.1009-8518.2022.03.008GEH Y, XIAOZ H, WANGY. Research on cryogenic lens support structures based on a Bi-material system for thermal deformation compensation[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(3): 69-76.(in Chinese). doi: 10.3969/j.issn.1009-8518.2022.03.008
[18] B HAN, Y T FENG, Z H ZHANG et al. Spatial heterodyne spectroscopy for long-wave infrared: optical design and laboratory performance, 35(2020).
[19] C R ENGLERT, J M HARLANDER, D D BABCOCK et al. Compression assembly of spatial heterodyne spectroscopy interferometers. Recent Patents on Space Technology, 1, 1-6(2011).
[20] J M HARLANDER, R J REYNOLDS, F L ROESLER et al. Spatial heterodyne spectroscopy: laboratory tests of field-widened, multiple-order, and vacuum ultraviolet systems, 48-59(1992).
[21] 曹玉岩, 王建立, 初宏亮, 等. 大口径光学透镜的双级柔性支撑结构设计[J]. 光学 精密工程, 2021, 29(8): 1867-1880. doi: 10.37188/OPE.20212908.1867CAOY Y, WANGJ L, CHUH L, et al. Design and analysis of bi-flexible mounting structure for large optical lens[J]. Opt. Precision Eng., 2021, 29(8): 1867-1880.(in Chinese). doi: 10.37188/OPE.20212908.1867
[22] 杨勋, 徐抒岩, 马宏财, 等. 径向温度梯度对轻量化反射镜面形精度的影响[J]. 光学 精密工程, 2019, 27(7): 1552-1560. doi: 10.3788/ope.20192707.1552YANGX, XUS Y, MAH C, et al. Influence of radial temperature gradient on surface figure of lightweight reflective mirror[J]. Opt. Precision Eng., 2019, 27(7): 1552-1560.(in Chinese). doi: 10.3788/ope.20192707.1552
[23] 屈金祥, 陆燕. 平面光学镜低温温度场和热变形分析方法[J]. 低温与超导, 2008, 36(9): 71-75. doi: 10.3969/j.issn.1001-7100.2008.09.015QUJ X, LUY. Analyzing methods of cryogenic temperature distribution and thermal distortion for flat reflectors[J]. Cryogenics and Superconductivity, 2008, 36(9): 71-75.(in Chinese). doi: 10.3969/j.issn.1001-7100.2008.09.015
[24] 董得义, 李志来, 李锐钢, 等. 胶层固化对反射镜面形影响的仿真与试验[J]. 光学 精密工程, 2014, 22(10): 2698-2707. doi: 10.3788/ope.20142210.2698DONGD Y, LIZ L, LIR G, et al. Simulation and experiment of influence of adhesive curing on reflective mirror surface[J]. Opt. Precision Eng., 2014, 22(10): 2698-2707.(in Chinese). doi: 10.3788/ope.20142210.2698
[25] V L GENBERG, G MICHELS, G BISSON. Freeform surfaces in STOP analysis, 1, 17(2021).