• Photonics Research
  • Vol. 7, Issue 1, 8 (2019)
Jiwen Zhu1, Xuemei Cheng1、2、*, Yali Liu1, Ruiduo Wang1, Man Jiang1, Diao Li1, Baole Lu1, and Zhaoyu Ren1、3、*
Author Affiliations
  • 1State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, National Photoelectric Technology and Functional Materials & Application International Cooperation Center, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
  • 2e-mail: xmcheng@nwu.edu.cn
  • 3e-mail: rzy@nwu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000008 Cite this Article Set citation alerts
    Jiwen Zhu, Xuemei Cheng, Yali Liu, Ruiduo Wang, Man Jiang, Diao Li, Baole Lu, Zhaoyu Ren. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber[J]. Photonics Research, 2019, 7(1): 8 Copy Citation Text show less
    References

    [1] D. J. Richardson. Silicon photonics: beating the electronics bottleneck. Nat. Photonics, 3, 562-564(2009).

    [2] S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, Y. R. Shen. All-optical graphene modulator based on optical Kerr phase shift. Optica, 3, 541-544(2016).

    [3] Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, K. Yvind. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett., 15, 4393-4400(2015).

    [4] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang. Ultrafast all-optical graphene modulator. Nano Lett., 14, 955-959(2014).

    [5] J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, Y. Q. Lu. An all-optical modulator based on a stereo graphene-microfiber structure. Light Sci. Appl., 4, e360(2015).

    [6] A. M. Dawes, L. Illing, S. M. Clark, D. J. Gauthier. All-optical switching in rubidium vapor. Science, 308, 672-674(2005).

    [7] D. Pacifici, H. J. Lezec, H. A. Atwater. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics, 1, 402-406(2007).

    [8] A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J.-H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, J. Kinaret. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7, 4598-4810(2015).

    [9] Z. P. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 10, 227-238(2016).

    [10] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson. All-optical control of light on a silicon chip. Nature, 431, 1081-1084(2004).

    [11] X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, Q. H. Gong. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photonics, 2, 185-189(2008).

    [12] C. Koos, D. L. Elder, D. Korn, H. Yu, J. Leuthold, L. R. Dalton, L. Alloatti, M. Woessner, M. Lauermann, P. C. Schindler. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci. Appl., 4, e255(2015).

    [13] M. Liu, X. B. Yin, A. E. Ulin, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [14] S. Y. Luo, Y. N. Wang, T. Xin, Z. M. Wang. Graphene-based optical modulators. Nano. Res. Lett., 10, 199(2015).

    [15] T. C. Wang, X. D. Zhang. Improved third-order nonlinear effect in graphene based on bound states in the continuum. Photon. Res., 5, 629-639(2017).

    [16] Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, L. Zhang. Graphene-assisted microfiber for optical-power-based temperature sensor. IEEE Photon. Technol. Lett., 28, 383-386(2016).

    [17] S. R. Bongu, P. B. Bisht, R. C. K. Namboodiri, P. Nayak, S. Ramaprabhu, T. J. Kelly, C. Fallon, J. T. Costello. Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping. J. Appl. Phys., 116, 073101(2014).

    [18] C. Y. Zhao, D. Mao, J. L. Zhao, L. Han, L. Fang, X. T. Gan, Y. D. Wang. Graphene-assisted all-fiber phase shifter and switching. Optica, 2, 468-471(2015).

    [19] J. Kang, B. L. Lu, X. Y. Qi, X. Q. Feng, H. W. Chen, M. Jiang, Y. Wang, P. Fu, J. T. Bai. An efficient single-frequency Yb-doped All-fiber MOPA laser at 1064.3  nm. Chin. Phys. Lett., 33, 54-57(2016).

    [20] M. Qi, Z. Y. Ren, Y. Jiao, Y. X. Zhou, X. L. Xu, W. L. Li, J. Y. Li, X. L. Zheng, J. T. Bai. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J. Phys. Chem. C, 117, 14348-14353(2013).

    [21] R. W. Boyd. Nonlinear Optics(2009).

    [22] G. P. Agrawal. Nonlinear Fiber Optics(2005).

    [23] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon., 2, 1-59(2010).

    [24] B. Zhou, C. Shu, L. Wang, S. He. Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor. Opt. Lett., 36, 427-429(2011).

    [25] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82, 2954-2956(2003).

    [26] J. L. Cheng, N. Vermeulen, J. E. Sipe. Third order optical nonlinearity of graphene. New J. Phys., 16, 053014(2014).

    [27] R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, Q. M. Zhang. Electrostriction: nonlinear electromechanical coupling in solid dielectrics. J. Phys. Chem. B, 101, 10141-10150(1997).

    [28] A. Yeniay, J. Delavaux, J. Toulouse. Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers. J. Lightwave Technol., 20, 1425-1432(2002).

    [29] P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys., 2, 388-392(2006).

    [30] R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, B. J. Eggleton. On-chip stimulated Brillouin scattering. Opt. Fiber Technol., 19, 8285-8290(2011).

    [31] E. Lichtman, A. A. Friesem. Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers. Opt. Commun., 64, 544-548(1987).

    Jiwen Zhu, Xuemei Cheng, Yali Liu, Ruiduo Wang, Man Jiang, Diao Li, Baole Lu, Zhaoyu Ren. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber[J]. Photonics Research, 2019, 7(1): 8
    Download Citation