• Photonics Research
  • Vol. 13, Issue 2, 453 (2025)
Huafeng Dong1,2,†, Qianxi Yin1,†, Ziqiao Wu1, Yufan Ye1..., Rongxi Li1, Ziming Meng1,2 and Jiancai Xue1,2,*|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.534940 Cite this Article Set citation alerts
    Huafeng Dong, Qianxi Yin, Ziqiao Wu, Yufan Ye, Rongxi Li, Ziming Meng, Jiancai Xue, "Visible-near infrared broadband photodetector enabled by a photolithography-defined plasmonic disk array," Photonics Res. 13, 453 (2025) Copy Citation Text show less
    References

    [1] X. Yu, Y. Li, X. Hu. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun., 9, 4299(2018).

    [2] S. Cai, X. Xu, W. Yang. Materials and designs for wearable photodetectors. Adv. Mater., 31, 1808138(2019).

    [3] W. Hu, H. Cong, W. Huang. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl., 8, 106(2019).

    [4] F. H. L. Koppens, T. Mueller, P. Avouris. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [5] G. Konstantatos. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun., 9, 5266(2018).

    [6] F. P. García De Arquer, A. Armin, P. Meredith. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2, 16100(2017).

    [7] C. Liu, J. Guo, L. Yu. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci. Appl., 10, 123(2021).

    [8] M. Long, P. Wang, H. Fang. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 29, 1803807(2019).

    [9] S. Conti, L. Pimpolari, G. Calabrese. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun., 11, 3566(2020).

    [10] Y. Zhang, T. Zhu, N. Zhang. Air-stable violet phosphorus/MoS2 van der Waals heterostructure for high-responsivity and gate-tunable photodetection. Small, 19, 2301463(2023).

    [11] Q. Qiu, Z. Huang. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater., 33, 2008126(2021).

    [12] D. Lu, Y. Chen, L. Kong. Strain-plasmonic coupled broadband photodetector based on monolayer MoS2. Small, 18, 2107104(2022).

    [13] N. Flöry, P. Ma, Y. Salamin. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol., 15, 118-124(2020).

    [14] S. Lukman, L. Ding, L. Xu. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol., 15, 675-682(2020).

    [15] Y. Chen, Y. Wang, Z. Wang. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron., 4, 357-363(2021).

    [16] J. Han, F. Wang, Y. Zhang. Mid-infrared bipolar and unipolar linear polarization detections in Nb2GeTe4/MoS2 heterostructures. Adv. Mater., 35, 2305594(2023).

    [17] G. Wang, M. Zhang, D. Chen. Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun., 9, 5168(2018).

    [18] Y. Zhang, J. Y. Y. Loh, A. G. Flood. Ultra-sensitive cubic-ITO/silicon photodiode via interface engineering of native SiOx and lattice-strain-assisted atomic oxidation. Adv. Funct. Mater., 32, 2109794(2022).

    [19] H. Y. Lan, Y. H. Hsieh, Z. Y. Chiao. Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Lett., 21, 3083-3091(2021).

    [20] S. Bang, N. T. Duong, J. Lee. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling. Nano Lett., 18, 2316-2323(2018).

    [21] R. Kumar, A. Sharma, M. Kaur. Pt-nanostrip-enabled plasmonically enhanced broad spectral photodetection in bilayer MoS2. Adv. Opt. Mater., 5, 1700009(2017).

    [22] W. Ma, Z. Liu, Z. A. Kudyshev. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021).

    [23] W. Wang, L. Qi. Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices. Adv. Funct. Mater., 29, 1807275(2019).

    [24] J. Zha, M. Luo, M. Ye. Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater., 32, 2111970(2022).

    [25] J. Miao, W. Hu, Y. Jing. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small, 11, 2392-2398(2015).

    [26] Y. Liu, R. Cheng, L. Liao. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun., 2, 579(2011).

    [27] B. Du, L. Lin, W. Liu. Plasmonic hot electron tunneling photodetection in vertical Au–graphene hybrid nanostructures. Laser Photonics Rev., 11, 1600148(2017).

    [28] Y. S. Duh, Y. Nagasaki, Y. L. Tang. Giant photothermal nonlinearity in a single silicon nanostructure. Nat. Commun., 11, 4101(2020).

    [29] J. Lu, J. Yan, J. Yao. All-dielectric nanostructure Fabry–Pérot-enhanced Mie Resonances coupled with photogain modulation toward ultrasensitive In2S3 photodetector. Adv. Funct. Mater., 31, 2007987(2021).

    [30] Y. Zhi, X. C. Yu, Q. Gong. Single nanoparticle detection using optical microcavities. Adv. Mater., 29, 1604920(2017).

    [31] M. A. Schmidt, D. Y. Lei, L. Wondraczek. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat. Commun., 3, 1108(2012).

    [32] C. Zhang, B. Huang, H. Li. Plasmonic nanoneedle arrays with enhanced hot electron photodetection for near-IR imaging. Adv. Funct. Mater., 33, 2304368(2023).

    [33] X. Huang, H. Li, C. Zhang. Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals. Nat. Commun., 10, 1163(2019).

    [34] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8, 95-103(2014).

    [35] C. Zhang, Y. Luo, S. A. Maier. Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photonics Rev., 16, 2100714(2022).

    [36] D. Su, W. L. Wu, P. Q. Sun. Thermal-assisted multiscale patterning of nonplanar colloidal nanostructures for multi-modal anti-counterfeiting. Adv. Sci., 11, 2305469(2024).

    [37] B. Wen, J. Yang, C. Hu. Top-down fabrication of ordered nanophotonic structures for biomedical applications. Adv. Mater. Interfaces, 11, 2300856(2024).

    [38] S. Cakmakyapan, P. K. Lu, A. Navabi. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl., 7, 20(2018).

    [39] A. Gao, W. Xu, Y. Ponce de León. Controllable fabrication of Au nanocups by confined-space thermal dewetting for OCT imaging. Adv. Mater., 29, 1701070(2017).

    [40] R. Xu, Z. Zeng, Y. Lei. Well-defined nanostructuring with designable anodic aluminum oxide template. Nat. Commun., 13, 2435(2022).

    [41] S. Li, Y. C. Lin, W. Zhao. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater., 17, 535-542(2018).

    [42] D. Wang, Y. Li. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater., 23, 1044-1060(2011).

    [43] J. Zhang, Y. Li, X. Zhang. Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater., 22, 4249-4269(2010).

    [44] M. Pisco, F. Galeotti, G. Quero. Nanosphere lithography for optical fiber tip nanoprobes. Light Sci. Appl., 6, e16229(2017).

    [45] A. V. Whitney, B. D. Myers, R. P. Van Duyne. Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography. Nano Lett., 4, 1507-1511(2004).

    [46] Q. Bai, X. Huang, Y. Guo. Gap-surface-plasmon induced polarization photoresponse for MoS2-based photodetector. Nano Res., 16, 10272-10278(2023).

    [47] Y. Yang, J. Jeon, J.-H. Park. Plasmonic transition metal carbide electrodes for high-performance inse photodetectors. ACS Nano, 13, 8804-8810(2019).

    [48] G. Wang, L. Li, W. Fan. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater., 28, 1800339(2018).

    [49] S. Mukherjee, R. K. Chowdhury, D. Karmakar. Plasmon triggered, enhanced light–matter interactions in Au–MoS2 coupled system with superior photosensitivity. J. Phys. Chem. C, 125, 11023-11034(2021).

    [50] R. Wadhwa, A. Ghosh, D. Kumar. Platinum nanoparticle sensitized plasmonic-enhanced broad spectral photodetection in large area vertical-aligned MoS2 flakes. Nanotechnology, 33, 255702(2022).

    [51] V. Selamneni, H. Raghavan, A. Hazra. MoS2/paper decorated with metal nanoparticles (Au, Pt, and Pd) based plasmonic-enhanced broadband (visible-NIR) flexible photodetectors. Adv. Mater. Interfaces, 8, 2001988(2021).

    [52] J. Li, C. Nie, F. Sun. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces, 12, 8429-8436(2020).

    [53] X. Sun, J. Sun, J. Xu. A plasmon-enhanced SnSe2 photodetector by non-contact Ag nanoparticles. Small, 17, 2102351(2021).

    [54] C. H. Mao, A. Dubey, F. J. Lee. An ultrasensitive gateless photodetector based on the 2D bilayer MoS2-1D Si nanowire-0D Ag nanoparticle hybrid structure. ACS Appl. Mater. Interfaces, 13, 4126-4132(2021).

    [55] K. H. Li, X. Y. Zhang, Z. Z. Hu. Enhanced charge transport and broadband photoresponse of MoS2 photodetectors with sparsely distributed Ag@SiO2 core–shell nanostructures. Appl. Surf. Sci., 652, 159279(2024).

    [56] S. Ding, C. Liu, Z. Li. Ag-assisted dry exfoliation of large-scale and continuous 2D monolayers. ACS Nano, 18, 1195-1203(2024).

    [57] M. Zhang, G. Zeng, G. Wu. Van der Waals integrated plasmonic Au array for self-powered MoS2 photodetector. Appl. Phys. Lett., 122, 253503(2023).

    [58] A. Block, M. Liebel, R. Yu. Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci. Adv., 5, eaav8965(2019).

    [59] P. Sahatiya, S. Badhulika. Strain-modulation-assisted enhanced broadband photodetector based on large-area, flexible, few-layered Gr/MoS2 on cellulose paper. Nanotechnology, 28, 455204(2017).

    [60] Z. Peng, X. Chen, Y. Fan. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl., 9, 190(2020).

    [61] B. Munkhbat, P. Wróbel, T. J. Antosiewicz. Optical constants of several multilayer transition metal dichalcogenides measured by spectroscopic ellipsometry in the 300–1700 nm range: high index, anisotropy, and hyperbolicity. ACS Photonics, 9, 2398-2407(2022).

    [62] G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15-50(1996).

    [63] G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).

    [64] P. Ziesche, S. Kurth, J. P. Perdew. Density functionals from LDA to GGA. Comput. Mater. Sci., 11, 122-127(1998).

    [65] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [66] M. Schlipf, F. Gygi. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun., 196, 36-44(2015).

    [67] D. R. Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B, 88, 085117(2013).

    [68] S. Grimme, J. Antony, S. Ehrlich. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 154104(2010).

    [69] P. Yu, K. Hu, H. Chen. Novel p–p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity. Adv. Funct. Mater., 27, 1703166(2017).

    [70] L. Dou, Y. Yang, J. You. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun., 5, 5404(2014).

    [71] D. Wu, J. Guo, C. Wang. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano, 15, 10119-10129(2021).

    [72] T. Bills, C. T. Liu, J. Lim. A general strategy for enhancing sensitivity and suppressing noise in infrared organic photodetectors using non-conjugated polymer additives. Adv. Funct. Mater., 34, 2314210(2024).

    [73] M. Patel, P. M. Pataniya, C. K. Sumesh. Enhanced photoresponse by plasmon resonance in Ni-WS2/Si photodiode. Mater. Res. Bull., 145, 111518(2022).

    [74] Y. Liu, W. Huang, W. Chen. Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability. Appl. Surf. Sci., 481, 1127-1132(2019).

    [75] J. Xu, X. Cheng, T. Liu. Oxygen-incorporated and layer-by-layer stacked WS2 nanosheets for broadband, self-driven and fast-response photodetection. Nanoscale, 11, 6810-6816(2019).

    [76] M. Patel, P. M. Pataniya, D. J. Late. Plasmon-enhanced photoresponse in Ag-WS2/Si heterojunction. Appl. Surf. Sci., 538, 148121(2021).

    [77] Z. Luo, M. Yang, D. Wu. Rational design of WSe2/WS2/WSe2 dual junction phototransistor incorporating high responsivity and detectivity. Small Methods, 6, 2200583(2022).

    [78] H. S. Kim, M. Patel, J. Kim. Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV–visible–NIR optoelectronic devices. ACS Appl. Mater. Interfaces, 10, 3964-3974(2018).

    [79] H. Tan, Y. Fan, Y. Zhou. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano, 10, 7866-7873(2016).

    [80] Z. Jia, J. Xiang, F. Wen. Enhanced photoresponse of SnSe-nanocrystals-decorated WS2 monolayer phototransistor. ACS Appl. Mater. Interfaces, 8, 4781-4788(2016).

    [81] X. Lin, F. Wang, X. Shan. High-performance photodetector and its optoelectronic mechanism of MoS2/WS2 vertical heterostructure. Appl. Surf. Sci., 546, 149074(2021).

    [82] T. T. Nguyen, M. Patel, D. K. Ban. Vertically trigonal WS2 layer embedded heterostructure for enhanced ultraviolet–visible photodetector. J. Alloys Compd., 768, 143-149(2018).

    [83] C. Lan, C. Li, S. Wang. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C, 5, 1494-1500(2017).

    [84] X. Wang, D. Yan, C. Zhu. Ultrasensitive photodetector based on 2D WS2/AgInGaS quantum dots heterojunction with interfacial charge transfer. 2D Mater., 10, 045020(2023).

    [85] M. Alamri, B. Liu, S. M. Sadeghi. Graphene/WS2 nanodisk van der Waals heterostructures on plasmonic Ag nanoparticle-embedded silica metafilms for high-performance photodetectors. ACS Appl. Nano Mater., 3, 7858-7868(2020).

    [86] T. H. Tsai, Z. Y. Liang, Y. C. Lin. Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano, 14, 4559-4566(2020).

    [87] J. Yan, K. Ye, Z. Jia. High-performance broadband image sensing photodetector based on MnTe/WS2 van der Waals epitaxial heterostructures. ACS Appl. Mater. Interfaces, 16, 19112-19120(2024).

    [88] S. Chowdhury, A. P. Singh, S. Jit. p-WSe2 nanosheets/n-WS2 quantum dots/p-Si (2D-0D-3D) mixed-dimensional multilayer heterostructures based high-performance broadband photodetector. IEEE Trans. Nanotechnol., 23, 346-351(2024).

    [89] M. Patel, P. M. Pataniya, V. Patel. Flexible photodetector based on graphite/ZnO–WS2 nanohybrids on paper. J. Mater. Sci.: Mater. Electron., 33, 13771-13781(2022).

    [90] F. Fang, Y. Wan, H. Li. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity via interfacial engineering. ACS Nano, 16, 3985-3993(2022).

    [91] Z. Zhao, D. Wu, J. Guo. Synthesis of large-area 2D WS2 films and fabrication of a heterostructure for self-powered ultraviolet photodetection and imaging applications. J. Mater. Chem. C, 7, 12121-12126(2019).

    [92] R. Xiao, C. Lan, Y. Li. High performance van der Waals graphene–WS2–Si heterostructure photodetector. Adv. Mater. Interfaces, 6, 1901304(2019).

    [93] T. He, C. Lan, S. Zhou. Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS2 interfacial layer. J. Mater. Chem. C, 9, 3846-3853(2021).

    [94] D. Wu, C. Guo, Z. Wang. A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect. Nanoscale, 13, 13550-13557(2021).

    [95] G. Wang, Y. Sun, Z. Yang. Near-ideal Schottky junction photodetectors based on semimetal-semiconductor van der Waals heterostructures. Adv. Funct. Mater., 34, 2316267(2024).

    [96] H. Tan, W. Xu, Y. Sheng. Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv. Mater., 29, 1702917(2017).

    [97] J. Yao, Z. Zheng, J. Shao. Promoting photosensitivity and detectivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer. ACS Appl. Mater. Interfaces, 7, 26701-26708(2015).

    [98] K. Ye, L. Liu, Y. Liu. Lateral bilayer MoS2–WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater., 7, 1900815(2019).

    [99] X. Zhang, R. Pan, Y. Yang. High-performance photodetector based on a 3D Dirac semimetal Cd3As2/tungsten disulfide (WS2) van der Waals heterojunction. Adv. Photonics Res., 2, 2000194(2021).

    [100] S. Sinha, S. Kumar, S. K. Arora. Enhanced interlayer coupling and efficient photodetection response of in-situ grown MoS2–WS2 van der Waals heterostructures. J. Appl. Phys., 129, 155304(2021).

    [101] Z. Luo, H. Xu, W. Gao. High-performance and polarization-sensitive imaging photodetector based on WS2/Te tunneling heterostructure. Small, 19, 2207615(2023).

    [102] S. H. Kim, D. Lee, S. Moon. Sulfurized colloidal quantum dot/tungsten disulfide multi-dimensional heterojunction for an efficient self-powered visible-to-SWIR photodetector. Adv. Funct. Mater., 33, 2303778(2023).

    [103] J. Chen, Z. Zhang, Y. Ma. High-performance self-powered ultraviolet to near-infrared photodetector based on WS2/InSe van der Waals heterostructure. Nano Res., 16, 7851-7857(2023).

    [104] C. Ma, Y. Shi, W. Hu. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater., 28, 3683-3689(2016).

    [105] Z. Huang, M. Yang, Z. Qiu. Mixed-dimensional WS2/WSe2/Si unipolar barrier heterostructure for high-performance photodetection. Sci. China Mater., 66, 2354-2363(2023).

    [106] W. Wu, Q. Zhang, X. Zhou. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 51, 45-53(2018).

    [107] G. Sun, B. Li, J. Li. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Res., 12, 1139-1145(2019).

    [108] F. Gong, W. Luo, J. Wang. High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater., 26, 6084-6090(2016).

    [109] B. Yan, B. Ning, G. Zhang. Ultra-thin GeSe/WS2 vertical heterojunction with excellent optoelectronic performances. Adv. Opt. Mater., 10, 2102413(2022).

    [110] D. Zhao, H. Jiao, C. Chen. Controllable photocurrent generation in lateral bilayer MoS2–WS2 heterostructure. Adv. Opt. Mater., 11, 2300709(2023).

    [111] N. Perea-López, A. L. Elías, A. Berkdemir. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater., 23, 5511-5517(2013).

    [112] J. D. Yao, Z. Q. Zheng, J. M. Shao. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale, 7, 14974-14981(2015).

    [113] L. Zeng, L. Tao, C. Tang. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep., 6, 20343(2016).

    Huafeng Dong, Qianxi Yin, Ziqiao Wu, Yufan Ye, Rongxi Li, Ziming Meng, Jiancai Xue, "Visible-near infrared broadband photodetector enabled by a photolithography-defined plasmonic disk array," Photonics Res. 13, 453 (2025)
    Download Citation