• Frontiers of Optoelectronics
  • Vol. 11, Issue 4, 367 (2018)
Weina SHI1、2, Xiaowei LV1, and Yan SHEN1、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China
  • show less
    DOI: 10.1007/s12200-018-0835-8 Cite this Article
    Weina SHI, Xiaowei LV, Yan SHEN. BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity[J]. Frontiers of Optoelectronics, 2018, 11(4): 367 Copy Citation Text show less
    References

    [1] Kim H, Monllor-Satoca D, Kim W, Choi W. N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy & Environmental Science, 2015, 8(1): 247–257

    [2] Fan X, Wang T, Gao B, Gong H, Xue H, Guo H, Song L, Xia W, Huang X, He J. Preparation of the TiO2/graphic carbon nitride coreshell array as photoanode for efficient photoelectrochemical water splitting. Langmuir, 2016, 32(50): 13322–13332

    [3] Ding D, Dong B, Liang J, Zhou H, Pang Y, Ding S. Solvothermaletching process induced Ti-doped Fe2O3 thin film with low turn-on voltage for water splitting. ACS Applied Materials & Interfaces, 2016, 8(37): 24573–24578

    [4] Feng X, Chen Y, Qin Z, Wang M, Guo L. Facile fabrication of sandwich structured WO3 nanoplate arrays for efficient photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2016, 8(28): 18089–18096

    [5] Yan L, Zhao W, Liu Z. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Transactions (Cambridge, England), 2016, 45(28): 11346–11352

    [6] Fan X, Wang T, Guo Y, Gong H, Xue H, Guo H, Gao B, He J. Synthesis of ordered mesoporous TiO2-Carbon-CNTs nanocomposite and its efficient photoelectrocatalytic methanol oxidation performance. Microporous and Mesoporous Materials, 2017, 240: 1–8

    [7] Xue H, Wang T, Gong H, Guo H, Fan X, Gao B, Feng Y, Meng X, Huang X, He J. Constructing ordered three-dimensional channels of TiO2 for enhanced visible-light photo-catalytic performance of CO2 conversion induced by Au nanoparticles. Chemistry, an Asian Journal, 2018, 13(5): 577–583

    [8] Berak J M, Sienko M J. Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. Journal of Solid State Chemistry, 1970, 2(1): 109–133

    [9] Mi Q, Zhanaidarova A, Brunschwig B S, Gray H B, Lewis N S. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy & Environmental Science, 2012, 5(2): 5694–5700

    [10] Li Y, Zhang L, LiuR, Cao Z, Sun X, Liu X, Luo J. WO3@α-Fe2O3 heterojunction arrays with improved photoelectrochemical behavior for neutral pH water splitting. ChemCatChem, 2016, 8(17): 2765–2770

    [11] Zhang T, Zhu Z, Chen H, Bai Y, Xiao S, Zheng X, Xue Q, Yang S. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale, 2015, 7(7): 2933–2940

    [12] Su J, Guo L, Bao N, Grimes C A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Letters, 2011, 11(5): 1928–1933

    [13] Boudoire F, Toth R, Heier J, Braun A, Constable E C. Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting. Energy & Environmental Science, 2014, 7(8): 2680–2688

    [14] Solarska R, Królikowska A, Augustyński J. Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angewandte Chemie International Edition, 2010, 49(43): 7980–7983

    [15] Su J, Feng X, Sloppy J D, Guo L, Grimes C A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Letters, 2011, 11(1): 203–208

    [16] Amano F, Li D, Ohtani B. Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure. Chemical Communications (Cambridge, England), 2010, 46(16): 2769–2771

    [17] Mali M G, Yoon H, Kim M, Swihart M T, Al-Deyab S S, Yoon S S. Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting. Applied Physics Letters, 2015, 106(15): 151603

    [18] Ye L, Liu X, Zhao Q, Xie H, Zan L. Dramatic visible light photocatalytic activity of MnOx–BiOI heterogeneous photocatalysts and the selectivity of the cocatalyst. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(31): 8978–8983

    [19] Kuang P Y, Ran J R, Liu Z Q, Wang H J, Li N, Su Y Z, Jin Y G, Qiao S Z. Enhanced photoelectrocatalytic activity of BiOI nanoplate-zinc oxide nanorod p-n heterojunction. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(43): 15360–15368

    [20] Park H, Bak A, Ahn Y Y, Choi J, Hoffmannn M R. Photoelectrochemical performance of multi-layered BiOx-TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. Journal of Hazardous Materials, 2012, 211–212: 47–54

    [21] Ye K H, Chai Z, Gu J, Yu X, Zhao C, Zhang Y, Mai W. BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy, 2015, 18: 222–231

    [22] Shi W, Zhang X, Brillet J, Huang D, Li M, Wang M, Shen Y. Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 2016, 105: 387–393

    [23] Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with duallayer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174): 990–994

    [24] Wang J C, Yao H C, Fan Z Y, Zhang L,Wang J S, Zang S Q, Li Z J. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Applied Materials & Interfaces, 2016, 8(6): 3765–3775

    [25] Li W, Da P, Zhang Y, Wang Y, Lin X, Gong X, Zheng G. WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano, 2014, 8(11): 11770–11777

    [26] Nonaka K, Takase A, Miyakawa K. Raman spectra of sol-gelderived tungsten oxides. Journal of Materials Science Letters, 1993, 12(5): 274–277

    [27] Cui X, Zhang H, Dong X, Chen H, Zhang L, Guo L, Shi J. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry, 2008, 18(30): 3575–3580

    [28] Sun Y, Murphy C J, Reyes-Gil K R, Reyes-Garcia E A, Thornton J M, Morris N A, Raftery D. Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. International Journal of Hydrogen Energy, 2009, 34(20): 8476–8484

    [29] Chang C, Zhu L, Wang S, Chu X, Yue L. Novel mesoporous graphite carbon nitride/BiOI heterojunction for enhancing photocatalytic performance under visible-light irradiation. ACS Applied Materials & Interfaces, 2014, 6(7): 5083–5093

    [30] Zhang Y, Pei Q, Liang J, Feng T, Zhou X, Mao H, Zhang W, Hisaeda Y, Song X M. Mesoporous TiO2-based photoanode sensitized by BiOI and investigation of its photovoltaic behavior. Langmuir, 2015, 31(37): 10279–10284

    [31] Feng Y, Liu C, Che H, Chen J, Huang K, Huang C, Shi W. The highly improved visible light photocatalytic activity of BiOI through fabricating a novel p–n heterojunction BiOI/WO3 nanocomposite. CrystEngComm, 2016, 18(10): 1790–1799

    [32] Hou Y, Zuo F, Dagg A P, Liu J, Feng P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26(29): 5043–5049

    Weina SHI, Xiaowei LV, Yan SHEN. BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity[J]. Frontiers of Optoelectronics, 2018, 11(4): 367
    Download Citation