• Photonics Research
  • Vol. 7, Issue 5, 558 (2019)
Yuan Ni1, Caixia Kan1、2、5、*, Longbing He3、4、6、*, Xingzhong Zhu1, Mingming Jiang1, and Daning Shi1
Author Affiliations
  • 1College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 2Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing 210016, China
  • 3SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
  • 4Southeast University-Monash University Joint Research Institute, Suzhou 215123, China
  • 5e-mail: cxkan@nuaa.edu.cn
  • 6e-mail: helongbing@seu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000558 Cite this Article Set citation alerts
    Yuan Ni, Caixia Kan, Longbing He, Xingzhong Zhu, Mingming Jiang, Daning Shi. Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments[J]. Photonics Research, 2019, 7(5): 558 Copy Citation Text show less
    References

    [1] R. W. Yu, L. M. Liz-Marzán, F. J. G. de Abajo. Universal analytical modeling of plasmonic nanoparticles. Chem. Soc. Rev., 46, 6710-6724(2017).

    [2] A. W. Schell, A. Kuhlicke, G. Kewes, O. Benson. ‘Flying plasmons’: Fabry-Pérot resonances in levitated silver nanowires. ACS Photon., 4, 2719-2725(2017).

    [3] J. X. Zhang, L. D. Zhang. Nanostructures for surface plasmons. Adv. Opt. Photon., 4, 157-321(2012).

    [4] H. C. Chen, C. Y. Cheng, H. C. Lin, H. H. Chen, C. H. Chen, C. P. Yang, K. H. Yang, C. M. Lin, T. Y. Lin, C. M. Shih, Y. C. Liu. Multifunctions of excited gold nanoparticles decorated artificial kidney with efficient hemodialysis and therapeutic potential. ACS Appl. Mater. Interfaces, 8, 19691-19700(2016).

    [5] C. Y. Li, M. Meng, S. C. Huang, L. Li, S. R. Huang, S. Chen, L. Y. Meng, R. Panneerselvam, S. J. Zhang, B. Ren, Z. L. Yang, J. F. Li, Z. Q. Tian. ‘Smart’ Ag nanostructures for plasmon-enhanced spectroscopies. J. Am. Chem. Soc., 137, 13784-13787(2015).

    [6] H. Y. Chen, Y. F. Di, D. Chen, K. Madrid, M. Zhang, C. P. Tian, L. P. Tang, Y. Q. Gu. Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules. Nanoscale, 7, 8884-8897(2015).

    [7] W. B. Hou, S. B. Cronin. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater., 23, 1612-1619(2013).

    [8] D. S. Wang, Y. D. Li. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater., 23, 1044-1060(2011).

    [9] H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, D. N. Shi. Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior. Photon. Res., 5, 27-32(2017).

    [10] N. D. Burrows, S. Harvey, F. A. Idesis, C. J. Murphy. Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir, 33, 1891-1907(2017).

    [11] N. R. Jana, L. Gearheart, C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun., 2001, 617-618(2001).

    [12] J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, D. N. Shi. End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol). Appl. Phys. Lett., 104, 253105(2014).

    [13] X. H. Huang, S. Neretina, M. A. El-Sayed. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater., 21, 4880-4910(2009).

    [14] C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li. Gold microplates with well-defined shapes. Small, 6, 1768-1775(2010).

    [15] X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, J. F. Wang. Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability. Adv. Funct. Mater., 26, 341-352(2016).

    [16] B. Wiley, Y. G. Sun, Y. N. Xia. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res., 40, 1067-1076(2007).

    [17] D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur, M. Meunier. An analytic model for the dielectric function of Au, Ag, and their alloys. Adv. Opt. Mater., 2, 176-182(2014).

    [18] Y. Y. Wu, G. L. Li, C. Cherqui, N. W. Bigelow, N. Thakkar, D. J. Masiello, J. P. Camden, P. D. Rack. Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects. ACS Photon., 3, 130-138(2016).

    [19] Y. M. Si, Y. C. Bai, X. J. Qin, J. Li, W. W. Zhong, Z. J. Xiao, J. S. Li, Y. D. Yin. Alkyne-DNA-functionalized alloyed Au/Ag nanospheres for ratiometric surface-enhanced Raman scattering imaging assay of endonuclease activity in live cells. Anal. Chem., 90, 3898-3905(2018).

    [20] Y. H. Cheng, Y. Zhang, S. L. Chau, S. K. M. Lai, H. W. Tang, K. M. Ng. Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys. ACS Appl. Mater. Interfaces, 8, 29668-29675(2016).

    [21] A. Hatef, B. Darvish, A. Dagallier, Y. R. Davletshin, W. Johnston, J. C. Kumaradas, D. Rioux, M. Meunier. Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water. J. Phys. Chem. C, 119, 24075-24080(2015).

    [22] R. Rajendra, P. Bhatia, A. Justin, S. Sharma, N. Ballav. Homogeneously-alloyed gold-silver nanoparticles as per feeding moles. J. Phys. Chem. C, 119, 5604-5613(2015).

    [23] I. Lee, S. W. Han, K. Kim. Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. Chem. Commun., 2001, 1782-1783(2001).

    [24] C. Wang, S. Peng, R. Chan, S. H. Sun. Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au. Small, 5, 567-570(2009).

    [25] C. Wang, H. G. Yin, R. Chan, S. Peng, S. Dai, S. H. Sun. One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation. Chem. Mater., 21, 433-435(2009).

    [26] Y. G. Sun, Y. N. Xia. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett., 3, 1569-1572(2003).

    [27] Q. B. Zhang, J. Y. Lee, J. Yang, C. Boothroyd, J. X. Zhang. Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions. Nanotechnology, 18, 245605(2007).

    [28] X. Y. Wei, Q. K. Fan, H. P. Liu, Y. C. Bai, L. Zhang, H. Q. Zheng, Y. D. Yin, C. B. Gao. Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale, 8, 15689-15695(2016).

    [29] C. B. Gao, Y. X. Hu, M. S. Wang, M. F. Chi, Y. D. Yin. Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J. Am. Chem. Soc., 136, 7474-7479(2014).

    [30] T. Zhang, F. Zhou, L. F. Hang, Y. Q. Sun, D. L. Liu, H. L. Li, G. Q. Liu, X. J. Lyu, C. C. Li, W. P. Cai, Y. Li. Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties. J. Mater. Chem. C, 5, 11039-11045(2017).

    [31] J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, Y. Han. Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances. Small, 11, 5214-5221(2015).

    [32] W. H. Qi, S. T. Lee. Phase stability, melting, and alloy formation of Au-Ag bimetallic nanoparticles. J. Phys. Chem. C, 114, 9580-9587(2010).

    [33] W. Albrecht, J. E. S. van der Hoeven, T. S. Deng, P. E. de Jongh, A. van Blaaderen. Fully alloyed metal nanorods with highly tunable properties. Nanoscale, 9, 2845-2851(2017).

    [34] Y. C. Bai, C. B. Gao, Y. D. Yin. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability. Nanoscale, 9, 14875-14880(2017).

    [35] A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, L. M. Liz-Marzán. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J. Am. Chem. Soc., 139, 107-110(2017).

    [36] Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, J. F. Wang. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater., 3, 801-812(2015).

    [37] J. J. Wei, C. X. Kan, Y. K. Lou, Y. Ni, H. Y. Xu, C. S. Wang. Synthesis and stability of bimetallic Au@Ag nanorods. Superlattice. Microst., 100, 315-323(2016).

    [38] X. Z. Zhu, H. K. Yip, X. L. Zhuo, R. B. Jiang, J. L. Chen, X. M. Zhu, Z. Yang, J. F. Wang. Realization of red plasmon shifts up to ∼900  nm by AgPd-tipping elongated Au nanocrystals. J. Am. Chem. Soc., 139, 13837-13846(2017).

    [39] W. Y. Tao, A. W. Zhao, H. H. Sun, Z. B. Gan, M. F. Zhang, D. Li, H. Y. Guo. Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates. RSC Adv., 4, 3487-3493(2014).

    [40] A. M. Smith, M. C. Mancini, S. M. Nie. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol., 4, 710-711(2009).

    [41] Y. Qiao, F. Ma, C. Liu, B. Zhou, Q. L. Wei, W. L. Li, D. N. Zhong, Y. Y. Li, M. Zhou. Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing. ACS Appl. Mater. Interfaces, 10, 193-206(2018).

    CLP Journals

    [1] Zhipeng Sun, Mingming Jiang, Wangqi Mao, Caixia Kan, Chongxin Shan, Dezhen Shen. Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources[J]. Photonics Research, 2020, 8(1): 91

    [2] Zhigang Gao, Haibo Zhu, Bochao Sun, Yingke Ji, Xiaosong Lu, Hao Tian, Jing Ren, Shu Guo, Jianzhong Zhang, Jun Yang, Xiangeng Meng, Katsuhisa Tanaka. Photonic engineering of superbroadband near-infrared emission in nanoglass composites containing hybrid metal and dielectric nanocrystals[J]. Photonics Research, 2020, 8(5): 698

    Yuan Ni, Caixia Kan, Longbing He, Xingzhong Zhu, Mingming Jiang, Daning Shi. Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments[J]. Photonics Research, 2019, 7(5): 558
    Download Citation