• Acta Photonica Sinica
  • Vol. 48, Issue 8, 827001 (2019)
LI Yang1、2、*, TAO Lüe1、2, GAN Fu-wan1、2, and ZHANG Jia-xiang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194808.0827001 Cite this Article
    LI Yang, TAO Lüe, GAN Fu-wan, ZHANG Jia-xiang. Strain-field-induced Energy Tuning for Self-assembled Quantum Dots-based Single-photon Sources Interfacing Atomic Transitions[J]. Acta Photonica Sinica, 2019, 48(8): 827001 Copy Citation Text show less
    References

    [1] DUAN Lu-ming, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics [J]. Nature, 2001, 414(6862): 413-418

    [2] TANG Jian-shun, ZHOU Zong-quan, WANG Yi-tao, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory[J]. Nature Communications, 2015, 6: 8652.

    [3] KASTNER M A. Artificial Atoms[J].Physics Today, 1993, 46(1): 24-31.

    [4] SILVERSTONE J W, BONNEAU D, O'BRIEN J L, et al. Silicon quantum photonics [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 390-402.

    [5] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.

    [6] BENSON O, SANTORI C, PELTON M, et al. Regulated and entangled photons from a single quantum Dot[J]. Physical Review Letters, 2000, 84(11): 2513-2516.

    [7] INTALLURA P M, WARD M B, KARIMOV O Z, et al. Quantum key distribution using a triggered quantum dot source emitting near 1.3μm[J]. Applied Physics Letters, 2007, 91(16): 161103.

    [8] FATTAL D, DIAMANTI E, INOUE K, et al. Quantum teleportation with a quantum dot single photon source[J]. Physical Review Letters, 2004, 92(3): 037904.

    [9] LOREDO J C, BROOME M A, HILAIRE P, et al. Boson sampling with single-photon fock states from a bright solid-state source[J]. Physical Review Letters, 2017, 118(13): 130503.

    [10] WANG Hui, HE Yu, LI Yu-huai, et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11(6): 361-365.

    [11] SINGH R, BESTER G. Nanowire quantum dots as an ideal source of entangled photon pairs[J]. Physical Review Letters, 2009, 103(6): 063601.

    [12] DUPERTUIS M A, KARLSSON K F, OBERLI D Y, et al. Symmetries and the polarized optical spectra of exciton complexes in quantum dots[J]. Physical Review Letters, 2011, 107(12): 127403.

    [13] GAMMON D, SNOW E S, SHANABROOK B V, et al. Fine structure splitting in the optical spectra of single GaAs quantum dots[J]. Physical Review Letters, 1996, 76(16): 3005-3008.

    [14] ZHANG Jia-xiang, DING Fei, ZALLO E, et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode[J]. Nano Letters, 2013, 13(12): 5808-5813.

    [15] PATEL R B, BENNETT A J, FARRER I, et al. Two-photon interference of the emission from electrically tunable remote quantum dots[J]. Nature Photonics, 2010, 4(9): 632-635.

    [16] AKOPIAN N, WANG Li-juan, RASTELLI A, et al. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot[J]. Nature Photonics, 2011, 5(4): 230-233.

    [17] HESHAMI K, ENGLAND D G, HUMPHREYS P C, et al. Quantum memories: emerging applications and recent advances[J]. Journal of Modern Optics, 2016, 63(20): 2005-2028.

    [18] AFZELIUS M, SIMON C, DE RIEDMATTEN H, et al. Multimode quantum memory based on atomic frequency combs[J]. Physical Review A, 2009, 79(5).

    [19] ALONSO-GONZLEZ P, MARTN-SNCHEZ J, GONZLEZ Y, et al. Formation of lateral low density In(Ga)As quantum dot pairs in GaAs nanoholes[J]. Crystal Growth & Design, 2009, 9(5): 2525-2528

    [20] BASKARAN A, SMEREKA P. Mechanisms of Stranski-Krastanov growth [J]. Journal of Applied Physics, 2012, 111(4): 044321.

    [21] DIETRICH C P, FIORE A, THOMPSON M G, et al. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits[J]. Laser & Photonics Reviews, 2016, 10(6): 870-894.

    [22] TSAU C H, SPEARING S M, SCHMIDT M A. Fabrication of wafer-level thermocompression bonds[J]. Journal of Microelectromechanical Systems, 2002, 11(6): 641-647.

    [23] DING Fei, SINGH R, PLUMHOF J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress[J]. Physical Review Letters, 2010, 104(6): 067405.

    [24] KUKLEWICZ C E, MALEIN R N, PETROFF P M, et al. Electro-elastic tuning of single particles in individual self-assembled quantum dots[J]. Nano Letters, 2012, 12(7): 3761-3765.

    [25] ATKINSON P, ZALLO E, SCHMIDT O G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes[J]. Journal of Applied Physics, 2012, 112(5): 054303.

    [26] ADACHI S. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications[J]. Journal of Applied Physics, 1985, 58(3): R1-R29.

    [27] TROTTA R, ZALLO E, ORTIX C, et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry[J]. Physical Review Letters, 2012, 109(14): 147401.

    [28] PLUMHOF J D, KR PEK V, DING Fei, et al. Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InxGa1-xAs/GaAs quantum dots[J]. Physical Review B, 2011, 83(12): 121302.

    [29] RIVOIRE K, BUCKLEY S, MAJUMDAR A, et al. Fast quantum dot single photon source triggered at telecommunications wavelength[J]. Applied Physics Letters, 2011, 98(8): 083105.

    [30] CHEN Yan, ZHANG Jia-xiang, ZOPF M, et al. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots[J]. Nature Communications, 2016, 7: 10387.

    [31] TROTTA R, ATKINSON P, PLUMHOF J D, et al. Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators[J]. Advanced Materials, 2012, 24(20): 2668-2672.

    LI Yang, TAO Lüe, GAN Fu-wan, ZHANG Jia-xiang. Strain-field-induced Energy Tuning for Self-assembled Quantum Dots-based Single-photon Sources Interfacing Atomic Transitions[J]. Acta Photonica Sinica, 2019, 48(8): 827001
    Download Citation