• Matter and Radiation at Extremes
  • Vol. 10, Issue 2, 027403 (2025)
Zhantao Lu1,2,*, Xinglong Xie1,2, Xiao Liang1, Meizhi Sun1..., Ping Zhu1, Xuejie Zhang1, Linjun Li1,2, Hao Xue1,2, Guoli Zhang1,2, Rashid Ul Haq1,2, Dongjun Zhang1 and Jianqiang Zhu1,2|Show fewer author(s)
Author Affiliations
  • 1National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan, Beijing 100049, People’s Republic of China
  • show less
    DOI: 10.1063/5.0235138 Cite this Article
    Zhantao Lu, Xinglong Xie, Xiao Liang, Meizhi Sun, Ping Zhu, Xuejie Zhang, Linjun Li, Hao Xue, Guoli Zhang, Rashid Ul Haq, Dongjun Zhang, Jianqiang Zhu. Effect of laser wavelength on growth of ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(2): 027403 Copy Citation Text show less
    References

    [1] J.Nuckolls, A.Thiessen, L.Wood, G.Zimmerman. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139-142(1972).

    [2] K. S.Anderson, T. R.Boehly, R. S.Craxton, V. N.Goncharov, D. R.Harding, J. P.Knauer, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, J. F.Myattet?al.. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [3] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).

    [4] E. E.Meshkov. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn., 4, 101-104(1969).

    [5] Helmholtz. XLIII. On discontinuous movements of fluids. London, Edinburgh Dublin Philos. Mag. J. Sci., 36, 337-346(1868).

    [6] M. S.Plesset. On the stability of fluid flows with spherical symmetry. J. Appl. Phys., 25, 96-98(1954).

    [7] L.Rayleigh. Scientific Papers II, 200(1900).

    [8] G. I.Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. London, Ser. A, 201, 192-196(1950).

    [9] K. S.Anderson, R.Betti, P. Y.Chang, J.Edwards, M.Fatenejad, J. D.Lindl, R. L.McCrory, R.Nora, D.Shvarts, B. K.Spears. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement. Phys. Plasmas, 17, 058102(2010).

    [10] D.Layzer. On the instability of superposed fluids in a gravitational field. Astrophys. J., 122, 1(1955).

    [11] V. N.Goncharov. Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett., 88, 134502(2002).

    [12] T.Ikegawa, K.Nishihara. Ablation effects on weakly nonlinear Rayleigh–Taylor instability with a finite bandwidth. Phys. Rev. Lett., 89, 115001(2002).

    [13] R.Betti, J.Ramírez, R.Ramis, J.Sanz, R. P. J.Town. Nonlinear theory of the ablative Rayleigh–Taylor instability. Phys. Rev. Lett., 89, 195002(2002).

    [14] K.Mima, L.Montierth, R. L.Morse, H.Takabe. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676(1985).

    [15] S. E.Bodner. Rayleigh–Taylor instability and laser-pellet fusion. Phys. Rev. Lett., 33, 761(1974).

    [16] J. D.Lindl, D. H.Munro, M.Tabak. Hydrodynamic stability and the direct drive approach to laser fusion. Phys. Fluid. Plasma Phys., 2, 1007-1014(1990).

    [17] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 5, 1446(1998).

    [18] S. G.Glendinning, S. W.Haan, B. A.Hammel, J. D.Kilkenny, J. P.Knauer, J. D.Lindl, D.Munro, B. A.Remington, C. P.Verdon, S. V.Weber. A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas, 1, 1379-1389(1994).

    [19] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).

    [20] J.Sanz. Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. Lett., 73, 2700(1994).

    [21] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability. Phys. Plasmas, 2, 3844-3851(1995).

    [22] R.Betti, V. N.Goncharov, R. L.McCrory, P.Sorotokin, C. P.Verdon. Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas, 3, 1402-1414(1996).

    [23] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Self-consistent stability analysis of ablation fronts with small Froude numbers. Phys. Plasmas, 3, 4665-4676(1996).

    [24] R.Betti, V. N.Goncharov, R. L.McCrory, P.Sorotokin, C. P.Verdon. Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas, 3, 2122-2128(1996).

    [25] L. F.Ibanez, A. R.Piriz, J.Sanz. Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited. Phys. Plasmas, 4, 1117-1126(1997).

    [26] F. F.Chen. Introduction to Plasma Physics(1974).

    [27] E. G.Harris, J. F.Seely. Heating of a plasma by multiphoton inverse bremsstrahlung. Phys. Rev. A, 7, 1064(1973).

    [28] R.Boni, R. S.Craxton, J.Delettrez, L.Goldman, R.Keck, R. L.McCrory, W.Seka, D.Shvarts, J. M.Soures. Measurements and interpretation of the absorption of 0.35 μm laser radiation on planar targets. Opt. Commun., 40, 437-440(1982).

    [29] F.Amiranoff, R.Fabbro, E.Fabre, C.Garban-Labaune, C. E.Max, A.Michard, J.Virmont, M.Weinfeld. Effect of laser wavelength and pulse duration on laser-light absorption and back reflection. Phys. Rev. Lett., 48, 1018(1982).

    [30] R. S.Craxton, J.Delettrez, R. L.Keck, R. L.McCrory, M. C.Richardson, W.Seka, J. M.Soures. Absorption physics at 351 nm in spherical geometry. Phys. Rev. Lett., 54, 1656(1985).

    [31] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, S. W.Haan, R. L.Kauffman, O. L.Landen, J. D.Lindl, L. J.Suter. The physics basis for ignition using indirect-drive targets on the national ignition facility. Phys. Plasmas, 11, 339-491(2004).

    [32] B.Fryxell, D. Q.Lamb, P.MacNeice, K.Olson, P.Ricker, R.Rosner, F. X.Timmes, J. W.Truran, H.Tufo, M.Zingale. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser., 131, 273(2000).

    [33] M.Fatenejad, N.Flocke, C.Graziani, G.Gregori, D. Q.Lamb, D.Lee, J.Meinecke, A.Scopatz, P.Tzeferacos, K.Weide. FLASH MHD simulations of experiments that study shock-generated magnetic fields. High Energy Density Phys., 17, 24-31(2015).

    [34] C. W.Shu. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, 325-432(1998).

    [35] A. E.Deane, C.Federrath, D.Lee. A new multidimensional unsplit MHD solver in FLASH3. Numerical Numbering of Space Plasma Flows: ASTRONUM-2008, 406, 243(2009).

    [36] B.Van Leer. Towards the ultimate conservative difference scheme. J. Comput. Phys., 135, 229-248(1997).

    [37] W.Speares, M.Spruce, E. F.Toro. Restoration of the contact surface in the HLL–Riemann solver. Shock Waves, 4, 25-34(1994).

    [38] S. K.Doss, R. J.Gelinas, K.Miller. The moving finite element method: Applications to general partial differential equations with multiple large gradients. J. Comput. Phys., 40, 202-249(1981).

    [39] M.Desselberger, M. J.Lamb, M.Savage, O.Willi. Measurement of the Rayleigh–Taylor instability in targets driven by optically smoothed laser beams. Phys. Rev. Lett., 65, 2997(1990).

    [40] R.Betti, T. R.Boehly, D. K.Bradley, T. J. B.Collins, V. N.Goncharov, J. P.Knauer, P. W.Mckenty, D. D.Meyerhofer, V. A.Smalyuk, C. P.Verdonet?al.. Single-mode, Rayleigh–Taylor growth-rate measurements on the OMEGA laser system. Phys. Plasmas, 7, 338-345(2000).

    [41] H. J.Kull. Incompressible description of Rayleigh–Taylor instabilities in laser-ablated plasmas. Phys. Fluid. Plasma Phys., 1, 170-182(1989).

    [42] B. J.Albright, E.Vold, L.Yin. Plasma transport simulations of Rayleigh–Taylor instability in near-ICF deceleration regimes. Phys. Plasmas, 28, 092709(2021).

    [43] Y. J.Li, Z. Y.Li, Y. X.Liu, L. F.Wang, J. F.Wu, W. H.Ye, K. G.Zhao. Thin-shell effects on nonlinear bubble evolution in the ablative Rayleigh–Taylor instability. Phys. Plasmas, 29, 082102(2022).

    [44] S. P.Obenschain, A. J.Schmitt. The importance of laser wavelength for driving inertial confinement fusion targets. I. Basic physics. Phys. Plasmas, 30, 012701(2023).

    [45] K.Fang, Y.-T.Li, J.Zhang, Z.Zhang. Analytical studies of Rayleigh–Taylor instability growth of double-cone ignition scheme in 2020 winter experimental campaign. Acta Phys. Sin., 71, 035204(2022).

    [46] M.Chen, S. B.Dai, Z. M.Wang, F.-F.Zhang, S. J.Zhanget?al.. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF. Laser Phys. Lett., 13, 035401(2016).

    [47] D. A.Browne, M. B.Gaarde, S.Ghimire, G.Ndabashimiye, D. A.Reis, K. J.Schafer, M.Wu. Solid-state harmonics beyond the atomic limit. Nature, 534, 520(2016).

    [48] S.Han, H.Kim, S.Kim, S. W.Kim, Y. J.Kim, Y. W.Kim, I. Y.Park. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun., 7, 13105(2016).

    Zhantao Lu, Xinglong Xie, Xiao Liang, Meizhi Sun, Ping Zhu, Xuejie Zhang, Linjun Li, Hao Xue, Guoli Zhang, Rashid Ul Haq, Dongjun Zhang, Jianqiang Zhu. Effect of laser wavelength on growth of ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(2): 027403
    Download Citation