[1] YU Y M, XU H, CHENG J P, et al. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China[J]. Sci Total Environ, 2022, 837: 155626.
[2] LAI X, CHEN Q W, TANG X P, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective[J]. eTransportation, 2022, 12: 100169.
[3] WANG H, YU D D, KUANG C W, et al. Alkali metal anodes for rechargeable batteries[J]. Chem, 2019, 5(2): 313-338.
[4] ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chem Soc Rev, 2020, 49(10): 3040-3071.
[5] YANG Mei, CHEN Yifei, LIU Honglei, et al. J Chin Ceram Soc, 2022, 50(7): 1865-1874.
[6] ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook[J]. Adv Energy Mater, 2023, 13(10): 2203307.
[7] XU R, CHENG X B, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344.
[8] AURBACH D, ZABAN A, GOFER Y, et al. Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems[J]. J Power Sources, 1995, 54(1): 76-84.
[9] LI B R, CHAO Y, LI M C, et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries[J]. Electrochem Energy Rev, 2023, 6(1): 7.
[10] YU Z A, CUI Y, BAO Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes[J]. Cell Rep Phys Sci, 2020, 1(7): 100119.
[11] PENG Z, CAO X, GAO P Y, et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Adv Funct Mater, 2020, 30(24): 2001285.
[12] CUI C Y, YANG C Y, EIDSON N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase[J]. Adv Mater, 2020, 32(12): e1906427.
[13] YAN C, YAO Y X, CHEN X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries[J]. Angew Chem, 2018, 130(43): 14251-14255.
[14] KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884-5892.
[15] XU Y L, DONG K, JIE Y L, et al. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: Recent progress, limitations, and future perspectives[J]. Adv Energy Mater, 2022, 12(19): 2200398.
[16] WANG Ming, FANG Pengfei, DU Liang, et al. J Chin Ceram Soc, 2022, 50(2): 364-371.
[17] CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Adv Sci, 2015, 3(3): 1500213.
[18] LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Adv Mater, 2016, 28(9): 1853-1858.
[19] PATHAK R, CHEN K, GURUNG A, et al. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode[J]. Adv Energy Mater, 2019, 9(36): 1901486.
[20] GUO J C, TAN S J, ZHANG C H, et al. A self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries[J]. Adv Mater, 2023, 35(24): e2300350.
[21] WANG L P, ZHANG L, WANG Q J, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating[J]. Energy Storage Mater, 2018, 10: 16-23.
[22] LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angew Chem Int Ed Engl, 2018, 57(6): 1505-1509.
[23] SUN Y P, ZHAO Y, WANG J W, et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition[J]. Adv Mater, 2019, 31(4): 1806541.
[24] MENG J W, CHU F L, HU J L, et al. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries[J]. Adv Funct Mater, 2019, 29(30): 1902220.
[25] RONG Z L, SUN Y, YANG M, et al. How the PEG terminals affect the electrochemical properties of polymer electrolytes in lithium metal batteries[J]. Energy Storage Mater, 2023, 63: 103066.
[26] LIU F, XIAO Q F, WU H B, et al. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes[J]. Adv Energy Mater, 2018, 8(6): 1701744.
[27] ZHOU Guojun, QU Yifan, LI Afei, et al. J Chin Ceram Soc, 2022, 50(10).
[28] WANG H C, WANG Q, CAO X, et al. Thiol-branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium-metal batteries[J]. Adv Mater, 2020, 32(37): e2001259.
[29] JIANG F N, CHENG X B, YANG S J, et al. Thermoresponsive electrolytes for safe lithium-metal batteries[J]. Adv Mater, 2023, 35(12): e2209114.
[30] LU Q W, YANG J, LU W, et al. Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries[J]. Electrochim Acta, 2015, 152: 489-495.
[31] OTA H, SAKATA Y, OTAKE Y, et al. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte[J]. J Electrochem Soc, 2004, 151(11): A1778.
[32] HE Y B, LIU M, HUANG Z D, et al. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries[J]. J Power Sources, 2013, 239: 269-276.
[33] LI S M, HUANG J L, CUI Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nat Nanotechnol, 2022, 17(6): 613-621.
[34] MA J L, MENG F L, YU Y, et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries[J]. Nat Chem, 2019, 11(1): 64-70.
[35] CUI C, ZHANG R P, FU C K, et al. Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries[J]. Chem Eng J, 2022, 433: 133570.
[36] XU J R, LI J M, LI Y X, et al. Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3 PS4 in the SEI layer[J]. Adv Mater, 2022, 34(34): e2203281.
[37] SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nat Commun, 2019, 10(1): 900.
[38] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat Rev Mater, 2016, 1(4): 16013.
[39] XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 513-537.
[40] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.