• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 7, 2187 (2024)
LU Wei1,2, WANG Zihao1,3, ZHAO Anshun1,3, YU Mingxi1,3..., DU Mi1,3, ZHAO Xue1,3, ZHANG Wenjing1,3, LIU Mei3,* and FENG Ming1,3|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20240063 Cite this Article
    LU Wei, WANG Zihao, ZHAO Anshun, YU Mingxi, DU Mi, ZHAO Xue, ZHANG Wenjing, LIU Mei, FENG Ming. Elastic Polymer Solid Electrolyte Interphase Protects Lithium Metal Anode[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2187 Copy Citation Text show less
    References

    [1] YU Y M, XU H, CHENG J P, et al. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China[J]. Sci Total Environ, 2022, 837: 155626.

    [2] LAI X, CHEN Q W, TANG X P, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective[J]. eTransportation, 2022, 12: 100169.

    [3] WANG H, YU D D, KUANG C W, et al. Alkali metal anodes for rechargeable batteries[J]. Chem, 2019, 5(2): 313-338.

    [4] ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chem Soc Rev, 2020, 49(10): 3040-3071.

    [5] YANG Mei, CHEN Yifei, LIU Honglei, et al. J Chin Ceram Soc, 2022, 50(7): 1865-1874.

    [6] ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook[J]. Adv Energy Mater, 2023, 13(10): 2203307.

    [7] XU R, CHENG X B, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344.

    [8] AURBACH D, ZABAN A, GOFER Y, et al. Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems[J]. J Power Sources, 1995, 54(1): 76-84.

    [9] LI B R, CHAO Y, LI M C, et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries[J]. Electrochem Energy Rev, 2023, 6(1): 7.

    [10] YU Z A, CUI Y, BAO Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes[J]. Cell Rep Phys Sci, 2020, 1(7): 100119.

    [11] PENG Z, CAO X, GAO P Y, et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Adv Funct Mater, 2020, 30(24): 2001285.

    [12] CUI C Y, YANG C Y, EIDSON N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase[J]. Adv Mater, 2020, 32(12): e1906427.

    [13] YAN C, YAO Y X, CHEN X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries[J]. Angew Chem, 2018, 130(43): 14251-14255.

    [14] KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884-5892.

    [15] XU Y L, DONG K, JIE Y L, et al. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: Recent progress, limitations, and future perspectives[J]. Adv Energy Mater, 2022, 12(19): 2200398.

    [16] WANG Ming, FANG Pengfei, DU Liang, et al. J Chin Ceram Soc, 2022, 50(2): 364-371.

    [17] CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Adv Sci, 2015, 3(3): 1500213.

    [18] LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Adv Mater, 2016, 28(9): 1853-1858.

    [19] PATHAK R, CHEN K, GURUNG A, et al. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode[J]. Adv Energy Mater, 2019, 9(36): 1901486.

    [20] GUO J C, TAN S J, ZHANG C H, et al. A self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries[J]. Adv Mater, 2023, 35(24): e2300350.

    [21] WANG L P, ZHANG L, WANG Q J, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating[J]. Energy Storage Mater, 2018, 10: 16-23.

    [22] LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angew Chem Int Ed Engl, 2018, 57(6): 1505-1509.

    [23] SUN Y P, ZHAO Y, WANG J W, et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition[J]. Adv Mater, 2019, 31(4): 1806541.

    [24] MENG J W, CHU F L, HU J L, et al. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries[J]. Adv Funct Mater, 2019, 29(30): 1902220.

    [25] RONG Z L, SUN Y, YANG M, et al. How the PEG terminals affect the electrochemical properties of polymer electrolytes in lithium metal batteries[J]. Energy Storage Mater, 2023, 63: 103066.

    [26] LIU F, XIAO Q F, WU H B, et al. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes[J]. Adv Energy Mater, 2018, 8(6): 1701744.

    [27] ZHOU Guojun, QU Yifan, LI Afei, et al. J Chin Ceram Soc, 2022, 50(10).

    [28] WANG H C, WANG Q, CAO X, et al. Thiol-branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium-metal batteries[J]. Adv Mater, 2020, 32(37): e2001259.

    [29] JIANG F N, CHENG X B, YANG S J, et al. Thermoresponsive electrolytes for safe lithium-metal batteries[J]. Adv Mater, 2023, 35(12): e2209114.

    [30] LU Q W, YANG J, LU W, et al. Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries[J]. Electrochim Acta, 2015, 152: 489-495.

    [31] OTA H, SAKATA Y, OTAKE Y, et al. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte[J]. J Electrochem Soc, 2004, 151(11): A1778.

    [32] HE Y B, LIU M, HUANG Z D, et al. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries[J]. J Power Sources, 2013, 239: 269-276.

    [33] LI S M, HUANG J L, CUI Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nat Nanotechnol, 2022, 17(6): 613-621.

    [34] MA J L, MENG F L, YU Y, et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries[J]. Nat Chem, 2019, 11(1): 64-70.

    [35] CUI C, ZHANG R P, FU C K, et al. Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries[J]. Chem Eng J, 2022, 433: 133570.

    [36] XU J R, LI J M, LI Y X, et al. Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3 PS4 in the SEI layer[J]. Adv Mater, 2022, 34(34): e2203281.

    [37] SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nat Commun, 2019, 10(1): 900.

    [38] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat Rev Mater, 2016, 1(4): 16013.

    [39] XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 513-537.

    [40] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.

    LU Wei, WANG Zihao, ZHAO Anshun, YU Mingxi, DU Mi, ZHAO Xue, ZHANG Wenjing, LIU Mei, FENG Ming. Elastic Polymer Solid Electrolyte Interphase Protects Lithium Metal Anode[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2187
    Download Citation