• Journal of Applied Optics
  • Vol. 40, Issue 6, 1139 (2019)
XU Wei1, YUAN Qun1, GAO Zhishan1, YU Haobiao1..., SUN Yifeng1 and QU Yi2|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.5768/jao201940.0605002 Cite this Article
    XU Wei, YUAN Qun, GAO Zhishan, YU Haobiao, SUN Yifeng, QU Yi. Review of microsphere optical microscopy for super-resolution imaging and metrology[J]. Journal of Applied Optics, 2019, 40(6): 1139 Copy Citation Text show less

    Abstract

    Due to the diffraction limit, the greatest resolution of conventional optical microscopes is about half of the wavelength. Efforts to overcome the diffraction limit and to obtain higher imaging resolution have been hot researching spots of optical microscopy imaging field in recent years.Compared with other types of super-resolution microscopy imaging, the method based on microsphere optical microscopy is characterized by simple direct and label-free, etc. This paper briefly introduces the research progress of super-resolution microscopy imaging is, which combines microsphere with conventional optical microscopes by domestic and foreign teams, summarizes and compares from multiple aspects of microsphere lens parameters, imaging scheme, resolution, field and mechanism. Further, this paper elaborates the three-dimensional super-resolution metrology by combining microsphere lens with interference microscopy, is d as well as our research team work, described the optical paths in the types of Linnik and Mirau are, and analyzes the super-resolution measuring results are. Finally, it discusses the applications of the microsphere lens for super-resolution in microscopy imaging and interference metrology, and some of the future research works are prospected.
    XU Wei, YUAN Qun, GAO Zhishan, YU Haobiao, SUN Yifeng, QU Yi. Review of microsphere optical microscopy for super-resolution imaging and metrology[J]. Journal of Applied Optics, 2019, 40(6): 1139
    Download Citation