• Chinese Optics Letters
  • Vol. 23, Issue 5, 053601 (2025)
Xin Luo1,2,3, Fei Zhang1,3,4, Mingbo Pu1,3,4, Yingli Ha1,4..., Shilin Yu1,4, Hanlin Bao1,3, Qiong He1,3,4, Ping Gao1, Yinghui Guo1,3,4, Mingfeng Xu1,3,4 and Xiangang Luo1,3,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
  • show less
    DOI: 10.3788/COL202523.053601 Cite this Article Set citation alerts
    Xin Luo, Fei Zhang, Mingbo Pu, Yingli Ha, Shilin Yu, Hanlin Bao, Qiong He, Ping Gao, Yinghui Guo, Mingfeng Xu, Xiangang Luo, "Breaking symmetry dependency of symmetry-protected bound states in the continuum via metasurfaces," Chin. Opt. Lett. 23, 053601 (2025) Copy Citation Text show less
    References

    [1] X. Luo. Multiscale optical field manipulation via planar digital optics. ACS Photonics, 10, 2116(2023).

    [2] N. Yu, P. Genevet, M. A. Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [3] X. Luo. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron., 58, 594201(2015).

    [4] M. Pu, X. Li, X. Ma et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv., 1, e1500396(2015).

    [5] F. Zhang, M. Pu, X. Li et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater., 33, 2008157(2021).

    [6] J. Chen, X. Ye, S. Gao et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431(2022).

    [7] F. Zhang, Y. Guo, M. Pu et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat. Commun., 14, 1946(2023).

    [8] J. Cai, F. Zhang, M. Pu et al. Dispersion-enabled symmetry switching of photonic angular-momentum coupling. Adv. Funct. Mater., 33, 2212147(2023).

    [9] X. Xie, M. Pu, J. Jin et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett., 126, 183902(2021).

    [10] X. Luo. Metasurface waves in digital optics. J. Phys. Photonics, 2, 041003(2020).

    [11] S. I. Azzam, A. V. Kildishev. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater., 9, 2001469(2021).

    [12] C. W. Hsu, B. Zhen, A. D. Stone et al. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [13] S. Joseph, S. Pandey, S. Sarkar et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics, 10, 4175(2021).

    [14] Z. Wang, Y. Liang, J. Qu et al. Plasmonic bound states in the continuum for unpolarized weak spatially coherent light. Photonics Res., 11, 260(2023).

    [15] A. Leitis, A. Tittl, M. Liu et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv., 5, eaaw2871(2019).

    [16] S. Romano, M. Mangini, E. Penzo et al. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano, 14, 15417(2020).

    [17] F. Wu, X. Qi, M. Qin et al. Momentum mismatch driven bound states in the continuum and ellipsometric phase singularities. Phys. Rev. B, 109, 085436(2024).

    [18] I. A. M. Al-Ani, K. As’Ham, L. Huang et al. Enhanced strong coupling of TMDC monolayers by bound state in the continuum. Laser Photonics Rev., 15, 2100240(2021).

    [19] I. A. Al-Ani, K. As’ Ham, L. Huang et al. Strong coupling of exciton and high-Q mode in all-perovskite metasurfaces. Adv. Opt. Mater., 10, 2101120(2022).

    [20] V. Kravtsov, E. Khestanova, F. A. Benimetskiy et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).

    [21] Z. Liu, Y. Xu, Y. Lin et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [22] P. Hong, L. Xu, M. Rahmani. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron. Adv., 5, 200097(2022).

    [23] K. Koshelev, Y. Tang, K. Li et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639(2019).

    [24] S. Feng, T. Liu, W. Chen et al. Enhanced sum-frequency generation from etchless lithium niobate empowered by dual quasi-bound states in the continuum. Sci. China-Phys. Mech. Astron., 66, 124214(2023).

    [25] S. T. Ha, Y. H. Fu, N. K. Emani et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042(2018).

    [26] A. Kodigala, T. Lepetit, Q. Gu et al. Lasing action from photonic bound states in continuum. Nature, 541, 196(2017).

    [27] X. Zhang, Y. Liu, J. Han et al. Chiral emission from resonant metasurfaces. Science, 377, 1215(2022).

    [28] I. C. Benea-Chelmus, S. Mason, M. L. Meretska et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun., 13, 3170(2022).

    [29] S. C. Malek, A. C. Overvig, A. Alù et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl., 11, 246(2022).

    [30] C. W. Hsu, B. Zhen, J. Lee et al. Observation of trapped light within the radiation continuum. Nature, 499, 188(2013).

    [31] S. I. Azzam, V. M. Shalaev, A. Boltasseva et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [32] S. Weimann, Y. Xu, R. Keil et al. Compact surface Fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett., 111, 240403(2013).

    [33] M. S. Hwang, H. C. Lee, K. H. Kim et al. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun., 12, 4135(2021).

    [34] D. R. Abujetas, J. Olmos-Trigo, J. A. Sánchez-Gil. Tailoring accidental double bound states in the continuum in all-dielectric metasurfaces. Adv. Opt. Mater., 10, 2200301(2022).

    [35] X. Chen, W. Fan, H. Yan. Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing. Opt. Express, 28, 17102(2020).

    [36] L. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).

    [37] Y. Cai, Y. Huang, K. Zhu et al. Symmetric metasurface with dual band polarization-independent high-Q resonances governed by symmetry-protected BIC. Opt. Lett., 46, 4049(2021).

    [38] T. Sang, Q. Mi, C. Yang et al. Achieving asymmetry parameter-insensitive resonant modes through relative shift–induced quasi-bound states in the continuum. Nanophotonics, 13, 1369(2024).

    [39] Y. Wang, Z. Han, Y. Du et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 10, 1295(2021).

    [40] X. Liu, J. Li, Q. Zhang et al. Dual-toroidal dipole excitation on permittivity-asymmetric dielectric metasurfaces. Opt. Lett., 45, 2826(2020).

    [41] S. Yu, Y. Wang, Z. Gao et al. Dual-band polarization-insensitive toroidal dipole quasi-bound states in the continuum in a permittivity-asymmetric all-dielectric meta-surface. Opt. Express, 30, 4084(2022).

    [42] S. Han, P. Pitchappa, W. Wang et al. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces. Adv. Opt. Mater., 9, 2002001(2021).

    [43] J. Fan, Z. Li, Z. Xue et al. “Hybrid bound states in the continuum in terahertz metasurfaces. Opto-Electron. Sci., 2, 230006(2023).

    [44] T. Shi, Z. Deng, G. Geng et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022).

    [45] H. Wang, S. K. Gupta, X. Zhu et al. Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling. Phys. Rev. B, 98, 214101(2018).

    [46] Y. Tang, Y. Liang, J. Yao et al. Chiral bound states in the continuum in plasmonic metasurfaces. Laser Photonics Rev., 17, 2200597(2023).

    [47] J. Jin, X. Yin, L. Ni et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 574, 501(2019).

    [48] M. Kang, S. Zhang, M. Xiao et al. Merging bound states in the continuum at off-high symmetry points. Phys. Rev. Lett., 126, 117402(2021).

    [49] W. Wang, Y. K. Srivastava, T. C. Tan et al. Brillouin zone folding driven bound states in the continuum. Nat. Commun., 14, 2811(2023).

    [50] X. Luo, Y. Han, X. Du et al. Robust ultrahigh-Q quasi-bound states in the continuum in metasurfaces enabled by lattice hybridization. Adv. Opt. Mater., 11, 2301130(2023).

    [51] S. You, M. Zhou, L. Xu et al. Quasi-bound states in the continuum with a stable resonance wavelength in dimer dielectric metasurfaces. Nanophotonics, 12, 2051(2023).

    [52] G. Yang, S. U. Dev, M. S. Allen et al. Optical bound states in the continuum enabled by magnetic resonances coupled to a mirror. Nano Lett., 22, 2001(2022).

    [53] C. Zhou, L. Huang, R. Jin et al. Bound states in the continuum in asymmetric dielectric metasurfaces. Laser Photonics Rev., 17, 2200564(2023).

    [54] X. Du, L. Xiong, X. Zhao et al. Dual-band bound states in the continuum based on hybridization of surface lattice resonances. Nanophotonics, 11, 4843(2022).

    [55] S. Xiao, M. Qin, J. Duan et al. Polarization-controlled dynamically switchable high-harmonic generation from all-dielectric metasurfaces governed by dual bound states in the continuum. Phys. Rev. B, 105, 195440(2022).

    Xin Luo, Fei Zhang, Mingbo Pu, Yingli Ha, Shilin Yu, Hanlin Bao, Qiong He, Ping Gao, Yinghui Guo, Mingfeng Xu, Xiangang Luo, "Breaking symmetry dependency of symmetry-protected bound states in the continuum via metasurfaces," Chin. Opt. Lett. 23, 053601 (2025)
    Download Citation