[1] F P ZENG, J TANG, Q T FAN et al. Decomposition characteristics of SF6 under thermal fault for temperatures below 400℃. IEEE Transactions on Dielectrics and Electrical Insulation, 21, 995-1004(2014).
[2] J TANG, F LIU, X X ZHANG et al. Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF6 under four different partial discharges. IEEE Transactions on Dielectrics and Electrical Insulation, 19, 29-36(2012).
[3] K M SKOG, F XIONG, H KAWASHIMA et al. Compact, automated, inexpensive, and field-deployable vacuum-outlet gas chromatograph for trace-concentration gas-phase organic compounds. Analytical Chemistry, 91, 1318-1327(2019).
[4] 陈达畅, 唐炬, 张晓星, 等. 检测SF6分解特征组分的MoS2纳米片气敏特性与机理研究[J]. 中国电机工程学报, 2022, 42(22): 8390-8404.CHEND C, TANGJ, ZHANGX X, et al. Detection of SF6 decomposition products using MoS2 nanoflakes: gas sensing properties combined with mechanism study[J]. Proceedings of the CSEE, 2022, 42(22): 8390-8404.(in Chinese)
[5] X X ZHANG, H ZHOU, C CHEN et al. Ultraviolet differential optical absorption spectrometry: quantitative analysis of the CS2 produced by SF6 decomposition. Measurement Science and Technology, 28, 115102(2017).
[6] Z C LUO, F Y HAN, B TANG et al. Optical properties and decomposition mechanisms of SF6 at different partial discharge determined by infrared spectroscopy. AIP Advances, 8(2018).
[7] 张晓星, 陈振伟, 程宏图, 等. H2S及CO的近红外波段光声光谱检测技术[J]. 绝缘材料, 2021, 54(4): 95-101.ZHANGX X, CHENZ W, CHENGH T, et al. Near infrared photoacoustic spectrum detection technology of H2S and CO[J]. Insulating Materials, 2021, 54(4): 95-101.(in Chinese)
[8] H GE, W P KONG, R WANG et al. Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing. Optics Letters, 48, 2186-2189(2023).
[9] F WAN, R WANG, H GE et al. Optical feedback frequency locking: impact of directly reflected field and responding strategies. Optics Express, 32, 12428-12437(2024).
[10] A KNEBL, R DOMES, D YAN et al. Fiber-enhanced Raman gas spectroscopy for 18O-13C-labeling experiments. Analytical Chemistry, 91, 7562-7569(2019).
[11] A KNEBL, R DOMES, S WOLF et al. Fiber-enhanced Raman gas spectroscopy for the study of microbial methanogenesis. Analytical Chemistry, 92, 12564-12571(2020).
[12] 王建新, 陈伟根, 王品一, 等. 变压器故障特征气体空芯反谐振光纤增强拉曼光谱检测[J]. 中国电机工程学报, 2022, 42(16): 6136-6144.WANGJ X, CHENW G, WANGP Y, et al. Analysis of fault characteristic gases dissolved in transformer oil based on hollow-core anti-resonant fiber-enhanced Raman spectroscopy[J]. Proceedings of the CSEE, 2022, 42(16): 6136-6144.(in Chinese)
[13] J X WANG, W G CHEN, P Y WANG et al. Analysis of SF6 decomposed products by fibre-enhanced Raman spectroscopy for gas-insulated switchgear diagnosis. High Voltage, 9, 206-216(2024).
[14] S F GAO, Y Y WANG, X L LIU et al. Nodeless hollow-core fiber for the visible spectral range. Optics Letters, 42, 61-64(2017).
[15] G L LONG, J D WINEFORDNER. Limit of detection. A closer look at the IUPAC definition. Analytical Chemistry, 55, 712A-724A(1983).
[16] D YAN, J POPP, T FROSCH. Analysis of fiber-enhanced Raman gas sensing based on Raman chemical imaging. Analytical Chemistry, 89, 12269-12275(2017).
[17] Y S BAI, D S XIONG, Z Y YAO et al. Analysis of CH4, C2H6, C2H4, C2H2, H2, CO, and H2S by forward Raman scattering with a hollow-core anti-resonant fiber. Journal of Raman Spectroscopy, 53, 1023-1031(2022).
[18] P WERLE, R MÜCKE, F SLEMR. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Applied Physics B, 57, 131-139(1993).
[19] A KORNATH. Raman spectroscopic studies on SO2F2 in argon matrices. Journal of Molecular Spectroscopy, 188, 63-67(1998).
[20] H SHIMIZU, Y IKEDA, S SASAKI. High-pressure Raman study of liquid and crystalline carbonyl sulfide. Chemical Physics Letters, 175, 349-353(1990).
[21] B MONOSTORI, A WEBER. The Raman spectrum of gaseous CF4. The Journal of Chemical Physics, 33, 1867-1868(1960).
[22] T SHIMANOUCHI, H MATSUURA, Y OGAWA et al. Tables of molecular vibrational frequencies. Journal of Physical and Chemical Reference Data, 7, 1323-1444(1978).
[23] R G DICKINSON, R T DILLON, F RASETTI. Raman spectra of polyatomic gases. Physical Review, 34, 582-589(1929).
[24] P Y WANG, W G CHEN, J X WANG et al. Multigas analysis by cavity-enhanced raman spectroscopy for power transformer diagnosis. Analytical Chemistry, 92, 5969-5977(2020).
[25] 周峰. 表面微孔修饰光纤增强拉曼光谱及其对六氟化硫分解气体检测研究[D]. 重庆: 重庆大学, 2021.ZHOUF. Study on surface microporous modified fiber enhanced Raman spectroscopy and its detection of sulfur hexafluoride decomposition gas[D]. Chongqing: Chongqing University, 2021. (in Chinese)
[26] F Y CHU. SF6 decomposition in gas-insulated equipment. IEEE Transactions on Electrical Insulation, 693-725(1986).
[27] I SHEFT, A J PERKINS. Anhydrous hydrogen fluoride: Raman spectrum of the liquid. Journal of Inorganic and Nuclear Chemistry, 38, 665-668(1976).
[28] Q Q GAO, X H WANG, A J YANG et al. Influence of H2O and O2 on the main discharge mechanism in 50 Hz ac point-plane corona discharge. Physics of Plasmas, 26(2019).