• Optics and Precision Engineering
  • Vol. 32, Issue 14, 2189 (2024)
Tongqin RAN1, Fu WAN1,2,*, Quan ZHOU1,2, Weiping KONG1..., Qiang LIU1, Yingkai LONG3 and Weigen CHEN1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing400044, China
  • 2National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing400044, China
  • 3State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute, Chongqing40112, China
  • show less
    DOI: 10.37188/OPE.20243214.2189 Cite this Article
    Tongqin RAN, Fu WAN, Quan ZHOU, Weiping KONG, Qiang LIU, Yingkai LONG, Weigen CHEN. Design of automatic image measuring system Research on dynamic and high-sensitive detection of SF6 discharge decomposition products by fluorescence-suppressed fiber-enhanced Raman spectroscopy[J]. Optics and Precision Engineering, 2024, 32(14): 2189 Copy Citation Text show less
    References

    [1] F P ZENG, J TANG, Q T FAN et al. Decomposition characteristics of SF6 under thermal fault for temperatures below 400℃. IEEE Transactions on Dielectrics and Electrical Insulation, 21, 995-1004(2014).

    [2] J TANG, F LIU, X X ZHANG et al. Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF6 under four different partial discharges. IEEE Transactions on Dielectrics and Electrical Insulation, 19, 29-36(2012).

    [3] K M SKOG, F XIONG, H KAWASHIMA et al. Compact, automated, inexpensive, and field-deployable vacuum-outlet gas chromatograph for trace-concentration gas-phase organic compounds. Analytical Chemistry, 91, 1318-1327(2019).

    [4] 陈达畅, 唐炬, 张晓星, 等. 检测SF6分解特征组分的MoS2纳米片气敏特性与机理研究[J]. 中国电机工程学报, 2022, 42(22): 8390-8404.CHEND C, TANGJ, ZHANGX X, et al. Detection of SF6 decomposition products using MoS2 nanoflakes: gas sensing properties combined with mechanism study[J]. Proceedings of the CSEE, 2022, 42(22): 8390-8404.(in Chinese)

    [5] X X ZHANG, H ZHOU, C CHEN et al. Ultraviolet differential optical absorption spectrometry: quantitative analysis of the CS2 produced by SF6 decomposition. Measurement Science and Technology, 28, 115102(2017).

    [6] Z C LUO, F Y HAN, B TANG et al. Optical properties and decomposition mechanisms of SF6 at different partial discharge determined by infrared spectroscopy. AIP Advances, 8(2018).

    [7] 张晓星, 陈振伟, 程宏图, 等. H2S及CO的近红外波段光声光谱检测技术[J]. 绝缘材料, 2021, 54(4): 95-101.ZHANGX X, CHENZ W, CHENGH T, et al. Near infrared photoacoustic spectrum detection technology of H2S and CO[J]. Insulating Materials, 2021, 54(4): 95-101.(in Chinese)

    [8] H GE, W P KONG, R WANG et al. Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing. Optics Letters, 48, 2186-2189(2023).

    [9] F WAN, R WANG, H GE et al. Optical feedback frequency locking: impact of directly reflected field and responding strategies. Optics Express, 32, 12428-12437(2024).

    [10] A KNEBL, R DOMES, D YAN et al. Fiber-enhanced Raman gas spectroscopy for 18O-13C-labeling experiments. Analytical Chemistry, 91, 7562-7569(2019).

    [11] A KNEBL, R DOMES, S WOLF et al. Fiber-enhanced Raman gas spectroscopy for the study of microbial methanogenesis. Analytical Chemistry, 92, 12564-12571(2020).

    [12] 王建新, 陈伟根, 王品一, 等. 变压器故障特征气体空芯反谐振光纤增强拉曼光谱检测[J]. 中国电机工程学报, 2022, 42(16): 6136-6144.WANGJ X, CHENW G, WANGP Y, et al. Analysis of fault characteristic gases dissolved in transformer oil based on hollow-core anti-resonant fiber-enhanced Raman spectroscopy[J]. Proceedings of the CSEE, 2022, 42(16): 6136-6144.(in Chinese)

    [13] J X WANG, W G CHEN, P Y WANG et al. Analysis of SF6 decomposed products by fibre-enhanced Raman spectroscopy for gas-insulated switchgear diagnosis. High Voltage, 9, 206-216(2024).

    [14] S F GAO, Y Y WANG, X L LIU et al. Nodeless hollow-core fiber for the visible spectral range. Optics Letters, 42, 61-64(2017).

    [15] G L LONG, J D WINEFORDNER. Limit of detection. A closer look at the IUPAC definition. Analytical Chemistry, 55, 712A-724A(1983).

    [16] D YAN, J POPP, T FROSCH. Analysis of fiber-enhanced Raman gas sensing based on Raman chemical imaging. Analytical Chemistry, 89, 12269-12275(2017).

    [17] Y S BAI, D S XIONG, Z Y YAO et al. Analysis of CH4, C2H6, C2H4, C2H2, H2, CO, and H2S by forward Raman scattering with a hollow-core anti-resonant fiber. Journal of Raman Spectroscopy, 53, 1023-1031(2022).

    [18] P WERLE, R MÜCKE, F SLEMR. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Applied Physics B, 57, 131-139(1993).

    [19] A KORNATH. Raman spectroscopic studies on SO2F2 in argon matrices. Journal of Molecular Spectroscopy, 188, 63-67(1998).

    [20] H SHIMIZU, Y IKEDA, S SASAKI. High-pressure Raman study of liquid and crystalline carbonyl sulfide. Chemical Physics Letters, 175, 349-353(1990).

    [21] B MONOSTORI, A WEBER. The Raman spectrum of gaseous CF4. The Journal of Chemical Physics, 33, 1867-1868(1960).

    [22] T SHIMANOUCHI, H MATSUURA, Y OGAWA et al. Tables of molecular vibrational frequencies. Journal of Physical and Chemical Reference Data, 7, 1323-1444(1978).

    [23] R G DICKINSON, R T DILLON, F RASETTI. Raman spectra of polyatomic gases. Physical Review, 34, 582-589(1929).

    [24] P Y WANG, W G CHEN, J X WANG et al. Multigas analysis by cavity-enhanced raman spectroscopy for power transformer diagnosis. Analytical Chemistry, 92, 5969-5977(2020).

    [25] 周峰. 表面微孔修饰光纤增强拉曼光谱及其对六氟化硫分解气体检测研究[D]. 重庆: 重庆大学, 2021.ZHOUF. Study on surface microporous modified fiber enhanced Raman spectroscopy and its detection of sulfur hexafluoride decomposition gas[D]. Chongqing: Chongqing University, 2021. (in Chinese)

    [26] F Y CHU. SF6 decomposition in gas-insulated equipment. IEEE Transactions on Electrical Insulation, 693-725(1986).

    [27] I SHEFT, A J PERKINS. Anhydrous hydrogen fluoride: Raman spectrum of the liquid. Journal of Inorganic and Nuclear Chemistry, 38, 665-668(1976).

    [28] Q Q GAO, X H WANG, A J YANG et al. Influence of H2O and O2 on the main discharge mechanism in 50 Hz ac point-plane corona discharge. Physics of Plasmas, 26(2019).

    Tongqin RAN, Fu WAN, Quan ZHOU, Weiping KONG, Qiang LIU, Yingkai LONG, Weigen CHEN. Design of automatic image measuring system Research on dynamic and high-sensitive detection of SF6 discharge decomposition products by fluorescence-suppressed fiber-enhanced Raman spectroscopy[J]. Optics and Precision Engineering, 2024, 32(14): 2189
    Download Citation