• Photonics Research
  • Vol. 5, Issue 4, 372 (2017)
Suqin Nan, Yanfeng Bai*, Xiaohui Shi, Qian Shen, Lijie Qu, Hengxing Li, and Xiquan Fu
Author Affiliations
  • College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.1364/PRJ.5.000372 Cite this Article Set citation alerts
    Suqin Nan, Yanfeng Bai, Xiaohui Shi, Qian Shen, Lijie Qu, Hengxing Li, Xiquan Fu. Experimental investigation of ghost imaging of reflective objects with different surface roughness[J]. Photonics Research, 2017, 5(4): 372 Copy Citation Text show less
    References

    [1] T. Pittman, Y. Shih, D. Strekalov, A. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429-R3432(1995).

    [2] D. Strekalov, A. Sergienko, D. Klyshko, Y. H. Shih. Observation of two-photon ghost interference and diffraction. Phys. Rev. Lett., 74, 3600-3603(1995).

    [3] R. S. Bennink, S. J. Bentley, R. W. Boyd. ‘Two-photon’ coincidence imaging with a classical source. Phys. Rev. Lett., 89, 113601(2002).

    [4] J. Cheng, S. S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).

    [5] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett., 94, 183602(2005).

    [6] A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih. Two-photon imaging with thermal light. Phys. Rev. Lett., 94, 063601(2005).

    [7] C. Zhang, S. X. Guo, J. S. Cao, J. Guan, F. L. Gao. Object reconstitution using pseudo-inverse for ghost imaging. Opt. Express, 22, 30063-30073(2014).

    [8] W. L. Gong. High-resolution pseudo-inverse ghost imaging. Photon. Res., 3, 234-237(2015).

    [9] C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, S. S. Han. Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett., 101, 141123(2012).

    [10] W. Yu, M. Li, X. Yao. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express, 22, 7133-7144(2014).

    [11] Y. Kang, Y. P. Yao, Z. H. Kang, L. Ma, T. Y. Zhang. Performance analysis of compressive ghost imaging based on different signal reconstruction techniques. J. Opt. Soc. Am. A, 32, 1063-1067(2015).

    [12] Y. R. Huo, H. J. He, F. Chen. Compressive adaptive ghost imaging via sharing mechanism and fellow relationship. Appl. Opt., 55, 3356-3367(2016).

    [13] W. L. Gong, C. Q. Zhao, H. Yu, M. L. Chen, W. D. Xu, S. S. Han. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep., 6, 26133(2016).

    [14] W. Chen, X. D. Chen. Ghost imaging for three-dimensional optical security. Appl. Phys. Lett., 103, 221106(2013).

    [15] H. Yu, E. R. Li, W. L. Gong, S. S. Han. Structured image reconstruction for three-dimensional ghost imaging lidar. Opt. Express, 23, 14541-14551(2015).

    [16] X. Zeng, Y. F. Bai, X. H. Shi, Y. Gao, X. Q. Fu. The influence of the positive and negative defocusing on lensless ghost imaging. Opt. Commun., 382, 415-420(2016).

    [17] M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri. Backscattering differential ghost imaging in turbid media. Phys. Rev. Lett., 110, 083901(2013).

    [18] C. Yang, C. L. Wang, J. Guan, C. Zhang, S. X. Guo, W. L. Gong, F. L. Gao. Scalar-matrix-structured ghost imaging. Photon. Res., 4, 281-285(2016).

    [19] L. Wang, S. M. Zhao. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photon. Res., 4, 240-244(2016).

    [20] R. Meyers, K. S. Deacon, Y. Shih. Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A, 77, 041801(2008).

    [21] L. Basano, P. Ottonello. Diffuse-reflection ghost imaging from a double-strip illuminated by pseudo-thermal light. Opt. Commun., 283, 2657-2661(2010).

    [22] N. S. Bisht, E. K. Sharma, H. C. Kandpal. Experimental observation of lensless ghost imaging by measuring reflected photons. Opt. Lasers Eng., 48, 671-675(2010).

    [23] N. D. Hardy, J. H. Shapiro. Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio. Proc. SPIE, 7815, 78150L(2010).

    [24] N. D. Hardy, J. H. Shapiro. Reflective ghost imaging through turbulence. Phys. Rev. A, 84, 063824(2011).

    [25] C. F. Wang, D. W. Zhang, Y. F. Bai, B. Chen. Ghost imaging for a reflected object with a rough surface. Phys. Rev. A, 82, 063814(2010).

    [26] C. Luo, J. Cheng. Reflective ghost diffraction for objects with rough surfaces. J. Opt. Soc. Am. A, 30, 1166-1171(2013).

    [27] D.-F. Shi, F. Wang, H. Jian, C. Kai-Fa, K. Yuan, H. Shun-Xing, W. Ying-Jian. Compressed polarimetric ghost imaging of different material’s reflective objects. Opt. Rev., 22, 882-887(2015).

    [28] W. L. Gong. Correlated imaging for a reflective target with a smooth or rough surface. J. Opt., 18, 085702(2016).

    [29] Y. Gao, Y. Bai, X. Fu. Point-spread function in ghost imaging system with thermal light. Opt. Express, 24, 25856-25866(2016).

    [30] J. Cheng, S.-S. Han, Y.-J. Yan. Resolution and noise in ghost imaging with classical thermal light. Chin. Phys., 15, 2002-2006(2006).

    CLP Journals

    [1] Qin Fu, Yanfeng Bai, Xianwei Huang, Suqin Nan, Peiyi Xie, Xiquan Fu. Positive influence of the scattering medium on reflective ghost imaging[J]. Photonics Research, 2019, 7(12): 1468

    Suqin Nan, Yanfeng Bai, Xiaohui Shi, Qian Shen, Lijie Qu, Hengxing Li, Xiquan Fu. Experimental investigation of ghost imaging of reflective objects with different surface roughness[J]. Photonics Research, 2017, 5(4): 372
    Download Citation