• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 18, Issue 4, 744 (2020)
DONG Minghui*, DU Aiyan, YUAN Guangming, and LI Xiaojie
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2019372 Cite this Article
    DONG Minghui, DU Aiyan, YUAN Guangming, LI Xiaojie. First principle on visible light absorption characteristics of Ag doped ZnO/GaN heterojunction[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(4): 744 Copy Citation Text show less
    References

    [1] SREEDHAR A,REDDY N I,TA Q T H,et al. Plasmonic Ag nanowires sensitized ZnO flake-like structures as a potential photoanode material for enhanced visible light water splitting activity[J]. Journal of Electroanalytical Chemistry, 2019, (832):426-435. doi:10.1016/j.jelechem.2018.11.042.

    [2] SREEDHAR A,REDDY N I,QUI T T H,et al. Facile growth of novel morphology correlated Ag/Co-doped ZnO nanowire/flake-like composites for superior photoelectrochemical water splitting activity[J]. Ceramics International, 2019,45(6):6985-6993.

    [3] FUJISHIMA A,HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358): 37-38. doi:10.1038/238037a0.

    [4] CHANG J,JIANG Z Y,ZHANG Z Y,et al. Theoretical studies of photocatalytic behaviors of isoelectronic C/Si/Ge/Sn-doped TiO2:DFT+U[J]. Applied Surface Science, 2019(484):1304-1309. doi:10.1016/j.apsusc.2018.12.252.

    [5] MOHAMED M M,BAYOUMY W A,El-ASHKAR T Y M,et al. Graphene oxide dispersed in N-TiO2 nanoplatelets and their implication in wastewater remediation under visible light illumination:photoelectrocatalytic and photocatalytic properties[J]. Journal of Environmental Chemical Engineering, 2019,7(1):102884-102896. doi:10.1016/j.jece.2019.102884.

    [6] MAEDA K,TAKATA T,HARA M,et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. Journal of the American Chemical Society, 2005,127(23):8286-8287. doi:10.1021/ja0518777.

    [7] WANG D,ZHANG M L,ZHUANG H J,et al. The photocatalytic properties of hollow (GaN)1-x(ZnO)x composite nanofibers synthesized by electrospinning[J]. Applied Surface Science, 2017,396(2):888-896. doi:10.1016/j.apsusc.2016.11.053.

    [8] REN B,ZHANG X,ZHAO M,et al. Significant enhancement in photocatalytic activity of (GaN)1-x(ZnO)x nanowires via solubility and crystal facet tailoring[J]. AIP Advances, 2018,8(1):015206-015212. doi:10.1063/1.5009307.

    [9] LI J,LIU B,YANG W,et al. Solubility and crystallographic facet tailoring of (GaN)1-x(ZnO)x pseudobinary solid-solution nanostructures as promising photocatalysts[J]. Nanoscale, 2016,8(6):3694-3703. doi:10.1039/C5NR08663A.

    [10] CHEN D P,LOSOVYI Y,SKRABALAK S E. n-Type doping of visible-light-absorbing (GaN)1-x(ZnO)x with aliovalent Sn/Si substitutions[J]. Journal of Physical Chemistry C, 2018,122(25):13250-13258. doi:10.1021/acs.jpcc.7b08304.

    [11] LI L,MUCKERMAN J,HYBERTSEN M S,et al. Phase diagram, structure and electronic properties of (Ga1-xZnx)(N1-xOx) solid solutions from DFT-based simulations[J]. Physical Review B, 2011,83(13):1607-1619. doi:10.1103/PhysRevB.83.134202.

    [12] VALENTIN C D. Electronic structure of (Ga1-xZnx)N1-xOx photocatalyst for water splitting by hybrid Hartree-Fock density functional theory methods[J]. Journal of Physical Chemistry C, 2010,114(15):7054-7062. doi:10.1021/jp9112552.

    [13] WANG Z H,ZHAO M W,WANG X P,et al. Hybrid density functional study of band alignment in ZnO-GaN and ZnO-(Ga1-x Znx)(N1-xOx)-GaN heterostructures[J]. Physical Chemistry Chemical Physics, 2012,14(45):15693-15698.

    [14] ZHANG Y,WU Z F,GAO P F,et al. Enhanced visible light absorption in ZnO/GaN heterostructured nanofilms[J]. Journal of Alloys and Compounds, 2017,704(5):478-483. doi:10.1016/j.jallcom.2017.02.096.

    [15] ZHANG Y,FANG D Q,ZHANG S L,et al. Structural and electronic properties of ZnO/GaN heterostructured nanowires from first-principles study[J]. Physical Chemistry Chemical Physics, 2016,18(4):3097-3102. doi:10.1039/c5cp06564j.

    [16] PENG Y Y,QUE M L,HAN E L,et al. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect[J]. Nano Energy, 2019,58(4):633-640. doi:10.1016/j.nanoen.2019.01.076.

    [17] ZHANG X D,GUO M L,SHEN Y Y,et al. Electronic structure and optical transition in heavy metal doped ZnO by first-principle calculations[J]. Computational Materials Science, 2012,54(1):75-80. doi:10.1016/j.commatsci.2011.10.003.

    [18] PAUPARTE T,LUPAN O,ZHANG J,et al. Low temperature preparation of Ag-doped ZnO nanowire arrays,DFT study,and application to light emitting diode[J]. ACS Applied Materials & Interfaces, 2015,7(22):11871-11880.

    [19] CHEN H,QU Y,SUN L,et al. Band structures and optical properties of Ag and Al co-doped ZnO by experimental and theoretic calculation[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2019,114(10):113602-113608.

    [20] YOUSEFI H R,HASHEMI B. Photocatalytic properties of Ag@Ag-doped ZnO core-shell nanocomposite[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019(375):71-76. doi:10.1016/j.jphotochem.2019.02.008.

    [21] XIE R J,LI Z Q,LI X,et al. Emission enhancement of light-emitting diode by localized surface plasmon induced by Ag/p-GaN double grating[J]. Optics Communications, 2018(419):108-113. doi:10.1016/j.optcom.2018.03.012.

    [23] BARTOK A P,YATES J R. Ultrasoft pseudopotentials with kinetic energy density support: implementing the modified Becke-Johnson potential[J]. Physical Review B, 2019,99(23):235103-235111. doi:10.1103/PhysRevB.99.235103.

    [24] MONKHORST H J,PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976,13(12):5188-5192.

    [26] DENG H X,LUO J W,WEI S H. Chemical trends of stability and band alignment of lattice-matched II-VI/III-V semiconductor interfaces[J]. Physical Review B, 2015,91(7):075315-075322. doi:10.1103/physrevb.91.075315.

    [27] ZHANG H J,WU D H,TANG Q,et al. ZnO-GaN heterostructured nanosheets for solar energy harvesting:computational studies based on hybrid density functional theory[J]. Journal of Materials Chemistry A, 2013,1(6):2231-2237.

    [28] ZHU Y Z,CHEN G D,YE H G,et al. Electronic structure and phase stability of MgO,ZnO,CdO,and related ternary alloys[J]. Physical Review B, 2008,77(24):245209-245215. doi:10.1103/physrevb.77.245209.

    [29] MOSES P G,MIAO M,YAN Q,et al. Hybrid functional investigations of band gaps and band alignments for AlN,GaN,InN, and InGaN[J]. The Journal of Chemical Physics, 2011,134(8):084703-084713. doi:10.1063/1.3548872.

    [30] ZHOU Y D,ZHAO Z Y. Interfacial structure and properties of TiO2 phase junction studied by DFT calculations[J]. Applied Surface Science, 2019(485):8-21. doi:10.1016/j.apsusc.2019.04.193.

    [31] LIU G,YANG P. Numerical investigation on photoelectric properties of Nb,N co-doped TiO2[J]. Superlattices and Microstructures, 2019(129):130-138. doi:10.1016/j.spmi.2019.03.019.

    [32] NETHERCOT A H. Prediction of fermi energies and photoelectric thresholds based on electronegativity concepts[J]. Physical Review Letters, 1974,33(18):1088-1091. doi:10.1103/physrevlett.33.1088.

    [33] CHEN X,SHEN S,GUO L J,et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11):6503-6570. doi:10.1021/cr1001645.

    DONG Minghui, DU Aiyan, YUAN Guangming, LI Xiaojie. First principle on visible light absorption characteristics of Ag doped ZnO/GaN heterojunction[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(4): 744
    Download Citation