• Photonics Research
  • Vol. 12, Issue 8, 1665 (2024)
Yutian Liang1, Ruijian Li1, Jie Zhao1, Xingyuan Lu2..., Tong Liu1,*, Zhengliang Liu3, Yuan Ren3,4 and Chengliang Zhao2,5|Show fewer author(s)
Author Affiliations
  • 1Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
  • 2School of Physical Science and Technology, Soochow University, Suzhou 215006, China
  • 3Department of Basic Course, Space Engineering University, Beijing 101416, China
  • 4e-mail: renyuan_823@aliyun.com
  • 5e-mail: zhaochengliang@suda.edu.cn
  • show less
    DOI: 10.1364/PRJ.525368 Cite this Article Set citation alerts
    Yutian Liang, Ruijian Li, Jie Zhao, Xingyuan Lu, Tong Liu, Zhengliang Liu, Yuan Ren, Chengliang Zhao, "Rotational Doppler effect of composite vortex beams with tailored OAM spectra," Photonics Res. 12, 1665 (2024) Copy Citation Text show less
    References

    [1] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [2] N. B. Simpson, K. Dholakia, L. Allen. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett., 22, 52-54(1997).

    [3] L. Fang, Z. Wan, A. Forbes. Vectorial Doppler metrology. Nat. Commun., 12, 4186(2021).

    [4] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [5] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [6] R. Sun, S. Qiu, F. Han. Direction-sensitive rotational speed measurement based on the rotational Doppler effect of cylindrical vector beams. Appl. Opt., 61, 7917-7924(2022).

    [7] J. Jia, K. Zhang, G. Hu. Arbitrary cylindrical vector beam generation enabled by polarization-selective Gouy phase shifter. Photonics Res., 9, 1048-1054(2021).

    [8] Y. Yang, Y. Li, C. Wang. Generation and expansion of Laguerre–Gaussian beams. J. Opt., 51, 910-926(2022).

    [9] F. Gori, G. Guattari, C. Padovani. Bessel-Gauss beams. Opt. Commun., 64, 491-495(1987).

    [10] R. Chen, H. Zhou, M. Moretti. Orbital angular momentum waves: generation, detection, and emerging applications. Commun. Surveys Tuts., 22, 840-868(2020).

    [11] J. Wang, J.-Y. Yang, I. M. Fazal. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [12] A. Belmonte, C. Rosales-Guzmán, J. P. Torres. Measurement of flow vorticity with helical beams of light. Optica, 2, 1002-1005(2015).

    [13] O. Emile, J. Emile. Rotational Doppler effect: a review. Ann. Phys., 535, 2300250(2023).

    [14] H.-J. Wu, B.-S. Yu, J.-Q. Jiang. Observation of anomalous orbital angular momentum transfer in parametric nonlinearity. Phys. Rev. Lett., 130, 153803(2023).

    [15] L. Chen. Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image. Light Sci. Appl., 10, 148(2021).

    [16] Z. Shang, S. Fu, L. Hai. Multiplexed vortex state array toward high-dimensional data multicasting. Opt. Express, 30, 34053-34063(2022).

    [17] R. Qu, Y. Wang, M. An. Retrieving high-dimensional quantum steering from a noisy environment with N measurement settings. Phys. Rev. Lett., 128, 240402(2022).

    [18] M. P. Lavery, F. C. Speirits, S. M. Barnett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [19] M. Lavery, S. M. Barnett, F. C. Speirits. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 1, 1-4(2014).

    [20] H. Zhou, D. Fu, J. Dong. Theoretical analysis and experimental verification on optical rotational Doppler effect. Opt. Express, 24, 10050-10056(2016).

    [21] L. Fang, M. J. Padgett, J. Wang. Sharing a common origin between the rotational and linear Doppler effects. Laser Photonics Rev., 11, 1700183(2017).

    [22] S. Qiu, T. Liu, Z. Li. Influence of lateral misalignment on the optical rotational Doppler effect. Appl. Opt., 58, 2650-2655(2019).

    [23] C. Rosales-Guzmán, N. Hermosa, A. Belmonte. Experimental detection of transverse particle movement with structured light. Sci. Rep., 3, 2815(2013).

    [24] X. Hu, B. Zhao, Z.-H. Zhu. In situ detection of a cooperative target’s longitudinal and angular speed using structured light. Opt. Lett., 44, 3070-3073(2019).

    [25] H. Guo, X. Qiu, S. Qiu. Frequency upconversion detection of rotational Doppler effect. Photonics Res., 10, 183-188(2022).

    [26] X. Zhao, Z. Wang, X. Lu. Ultrahigh precision angular velocity measurement using frequency shift of partially coherent beams. Laser Photonics Rev., 17, 2300318(2023).

    [27] Y. Ren, S. Qiu, T. Liu. Compound motion detection based on OAM interferometry. Nanophotonics, 11, 1127-1135(2022).

    [28] H. Yan, Y. Fan, Z. Huang. Coherent detection of the rotational Doppler effect measurement based on triple Fourier transform. Opt. Express, 32, 11873-11885(2024).

    [29] J. Zhang, L. Cen, J. Zhang. Rotation velocity detection with orbital angular momentum light spot completely deviated out of the rotation center. Opt. Express, 28, 6859-6867(2020).

    [30] Y. Ding, X. Zhu, T. Liu. Detection of a spinning object using a superimposed optical vortex array. Opt. Express, 31, 2889-2899(2023).

    [31] Z. Guo, Z. Chang, Y. Zhang. Radial-mode sensitive probe beam in the rotational Doppler effect. Opt. Express, 31, 7632-7642(2023).

    [32] S. Qiu, X. Zhu, R. Tang. Noncoaxial RDE of circular asymmetry optical vortex for rotating axis detection. Photonics Res., 10, 2541-2548(2022).

    [33] Y. Zhang, Z. Zhang, Q. Wang. High-accuracy transverse translation velocimeter enabled by OAM-assisted dual-point transverse Doppler effect. APL Photonics, 8, 096111(2023).

    [34] Y. Zhang, Z. Zhang, Q. Wang. All-optical compensation strategy for high-sensitive and precise rotating velocimetry of a multi-pose target. Opt. Laser Technol., 174, 110712(2024).

    [35] X. Zhu, S. Qiu, T. Liu. Rotating axis measurement based on rotational Doppler effect of spliced superposed optical vortex. Nanophotonics, 12, 2157-2169(2023).

    [36] Y. Ding, Y. Ren, T. Liu. Analysis of misaligned optical rotational Doppler effect by modal decomposition. Opt. Express, 29, 15288-15299(2021).

    [37] S.-J. Ma, S.-L. Xu, X. Dong. Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition. Chin. Phys. B, 32, 104208(2023).

    [38] J.-Q. Lü, T.-Y. Cheng, J.-X. Guo. Robust measurement of angular velocity based on rotational Doppler effect in misaligned illumination. Appl. Phys. Lett., 123, 131107(2023).

    [39] L. Torner, J. P. Torres, S. Carrasco. Digital spiral imaging. Opt. Express, 13, 873-881(2005).

    [40] Z. Yang, O. S. Magaña-Loaiza, M. Mirhosseini. Digital spiral object identification using random light. Light Sci. Appl., 6, e17013(2017).

    [41] S. Fu, Z. Shang, L. Hai. Orbital angular momentum comb generation from azimuthal binary phases. Adv. Photonics Nexus, 1, 016003(2022).

    [42] J. Wang. High-dimensional orbital angular momentum comb. Adv. Photonics, 4, 050501(2022).

    [43] S. Fu, Y. Zhai, J. Zhang. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 19(2020).

    [44] F. Li, T. Xu, W. Zhang. Optical images rotation and reflection with engineered orbital angular momentum spectrum. Appl. Phys. Lett., 113, 161109(2018).

    [45] V. Arrizón, U. Ruiz, R. Carrada. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500-3507(2007).

    [46] Y. Zhai, J. Fan, H. Qiao. The rotational Doppler effect of twisted photons in scattered fields. Laser Photonics Rev., 17, 2201022(2023).

    [47] S. Quan, L. Chen, S. Wu. Vectorial Doppler complex spectrum and its application to the rotational detection. Appl. Phys. Express, 16, 042002(2023).

    [48] H. Zhou, D.-Z. Fu, J.-J. Dong. Orbital angular momentum complex spectrum analyzer for vortex light based on rotational Doppler effect. Light Sci. Appl., 6, e16251(2016).

    [49] S. Scholes, R. Kara, J. Pinnell. Structured light with digital micromirror devices: a guide to best practice. Opt. Eng., 59, 041202(2019).

    [50] S. Feng, H. G. Winful. Physical origin of the Gouy phase shift. Opt. Lett., 26, 485-487(2001).

    [51] S. Huang, Z. Miao, C. He. Composite vortex beams by coaxial superposition of Laguerre–Gaussian beams. Opt. Laser Eng., 78, 132-139(2016).

    [52] M.-Z. Ai, Y. Ding, Y. Ban. Experimentally realizing efficient quantum control with reinforcement learning. Sci. China: Phys. Mech. Astron., 65, 250312(2022).

    Yutian Liang, Ruijian Li, Jie Zhao, Xingyuan Lu, Tong Liu, Zhengliang Liu, Yuan Ren, Chengliang Zhao, "Rotational Doppler effect of composite vortex beams with tailored OAM spectra," Photonics Res. 12, 1665 (2024)
    Download Citation