• Chinese Optics Letters
  • Vol. 23, Issue 3, 031401 (2025)
Haoyang Yu1,2, Siyu Lai1, Qiuying Ma3,*, Zhaohui Jiang1,2..., Dong Pan1,2 and Weihua Gui1,2|Show fewer author(s)
Author Affiliations
  • 1School of Automation, Central South University, Changsha 410083, China
  • 2State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
  • 3Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
  • show less
    DOI: 10.3788/COL202523.031401 Cite this Article Set citation alerts
    Haoyang Yu, Siyu Lai, Qiuying Ma, Zhaohui Jiang, Dong Pan, Weihua Gui, "Dual feed-forward neural network for predicting complex nonlinear dynamics of mode-locked fiber laser under variable cavity parameters," Chin. Opt. Lett. 23, 031401 (2025) Copy Citation Text show less
    References

    [1] J. Kim, Y. Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics, 8, 465(2016).

    [2] F. Wang, A. G. Rozhin, V. Scardaci et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738(2008).

    [3] Á. Krolopp, A. Csákányi, D. Haluszka et al. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging. Biomed. Opt. Express, 7, 3531(2016).

    [4] K. Sulimany, O. Lib, G. Masri et al. Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser. Phys. Rev. Lett., 121, 133902(2018).

    [5] Y. Zhou, Y.-X. Ren, J. Shi et al. Breathing dissipative soliton explosions in a bidirectional ultrafast fiber laser. Photonics Res., 8, 1566(2020).

    [6] X. Liu, D. Popa, N. Akhmediev. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys. Rev. Lett., 123, 093901(2019).

    [7] G. Genty, L. Salmela, J. M. Dudley et al. Machine learning and applications in ultrafast photonics. Nat. Photonics, 15, 91(2021).

    [8] Q. Ma, H. Yu. Artificial intelligence-enabled mode-locked fiber laser: a review. Nanomanuf. Metrol., 6, 36(2023).

    [9] R. Kumar. Double internal loop higher-order recurrent neural network-based adaptive control of the nonlinear dynamical system. Soft Comput., 27, 17313(2023).

    [10] A. Dass, S. Srivastava, R. Kumar. A novel Lyapunov-stability-based recurrent-fuzzy system for the identification and adaptive control of nonlinear systems. Appl. Soft Comput., 137, 110161(2023).

    [11] R. Shobana, R. Kumar, B. Jaint. A recurrent neural network-based identification of complex nonlinear dynamical systems: a novel structure, stability analysis and a comparative study. Soft Comput., 28, 3941(2024).

    [12] R. Kumar, S. Srivastava, A. Mohindru. Lyapunov stability-dynamic back propagation-based comparative study of different types of functional link neural networks for the identification of nonlinear systems. Soft Comput., 24, 5463(2020).

    [13] R. Kumar. Recurrent context layered radial basis function neural network for the identification of nonlinear dynamical systems. Neurocomputing, 580, 127524(2024).

    [14] U. Andral, R. S. Fodil, F. Amrani et al. Fiber laser mode locked through an evolutionary algorithm. Optica, 2, 275(2015).

    [15] G. Pu, L. Yi, L. Zhang et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362(2019).

    [16] A. Kokhanovskiy, A. Ivanenko, S. Kobtsev et al. Machine learning methods for control of fibre lasers with double gain nonlinear loop mirror. Sci. Rep., 9, 2916(2019).

    [17] G. Pu, L. Yi, L. Zhang et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light Sci. Appl., 9, 13(2020).

    [18] R. I. Woodward, E. J. R. Kelleher. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Opt. Lett., 42, 2952(2017).

    [19] X. Wu, J. Peng, S. Boscolo et al. Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev., 16, 2100191(2022).

    [20] T. Pinto, U. C. De Moura, F. Da Ros et al. Optimization of frequency combs spectral-flatness using evolutionary algorithm. Opt. Express, 29, 23447(2021).

    [21] S. Boscolo, C. Finot. Artificial neural networks for nonlinear pulse shaping in optical fibers. Opt. Laser Technol., 131, 106439(2020).

    [22] X. Han, Z. Huang, J. Yue et al. Optimizing ultrashort pulse in fiber laser based on artificial intelligence algorithm. Sci. Rep., 14, 7919(2024).

    [23] L. Salmela, N. Tsipinakis, A. Foi et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. Nat. Mach. Intell., 3, 344(2021).

    [24] L. Salmela, M. Hary, M. Mabed et al. Feed-forward neural network as nonlinear dynamics integrator for supercontinuum generation. Opt. Lett., 47, 802(2022).

    [25] X. Jiang, D. Wang, Q. Fan et al. Physics-informed neural network for nonlinear dynamics in fiber optics. Laser Photonics Rev., 16, 2100483(2022).

    [26] Y. Fang, G.-Z. Wu, X.-K. Wen et al. Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol., 155, 108428(2022).

    [27] G. Pu, R. Liu, H. Yang et al. Fast predicting the complex nonlinear dynamics of mode-locked fiber laser by a recurrent neural network with prior information feeding. Laser Photonics Rev., 17, 2200363(2023).

    [28] Y. Fang, H.-B. Han, W.-B. Bo et al. Deep neural network for modeling soliton dynamics in the mode-locked laser. Opt. Lett., 48, 779(2023).

    [29] Z.-Z. Si, D.-L. Wang, B.-W. Zhu et al. Deep learning for dynamic modeling and coded information storage of vector-soliton pulsations in mode-locked fiber lasers. Laser Photonics Rev., 18, 2400097(2024).

    [30] D. Han, B. Zhang, R. Guo et al. Predicting evolutions of pulse characteristics along cavity position in passively mode-locked fiber laser via SSA-LSTM approach. Opt. Laser Technol., 171, 110390(2024).

    [31] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [32] Z. Fang, G. Pu, Y. Xu et al. Data-driven inverse design of mode-locked fiber lasers. Opt. Express, 31, 41794(2023).

    Haoyang Yu, Siyu Lai, Qiuying Ma, Zhaohui Jiang, Dong Pan, Weihua Gui, "Dual feed-forward neural network for predicting complex nonlinear dynamics of mode-locked fiber laser under variable cavity parameters," Chin. Opt. Lett. 23, 031401 (2025)
    Download Citation