• Acta Photonica Sinica
  • Vol. 50, Issue 6, 138 (2021)
Dan WANG, Qun HAN, Panpan NIU, and Tiegen LIU
Author Affiliations
  • Key Laboratory of Optoelectronics Information Science and Technology, Ministry of Education, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin300072, China
  • show less
    DOI: 10.3788/gzxb20215006.0614001 Cite this Article
    Dan WANG, Qun HAN, Panpan NIU, Tiegen LIU. Experimental Research on High Power Cascade Co-pumping Erbium-Ytterbium Co-doped Fiber Laser[J]. Acta Photonica Sinica, 2021, 50(6): 138 Copy Citation Text show less
    References

    [1] C CODEMARD, V PHILIPPOV. High-energy in-fiber pulse amplification for coherent lidar applications. Optics Letters, 29, 2590-2592(2004).

    [2] C CODEMARD, C FARRELL, P DUPRIEZ et al. Millijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fibre Master-Oscillator Power-Amplifier at 1.55 μm. Comptes Rendus Physique, 7, 170-176(2006).

    [3] A DOLFI BOUTEYRE, G CANAT, M VALLA et al. Pulsed 1.5 µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier. IEEE Journal of Selected Topics in Quantum Electronics, 15, 441-450(2009).

    [4] Y KOBAYASHI, E H SEKIYA, M BANNO et al. Effect of P-to-rare earth atomic ratio on energy transfer in Er-Yb-doped optical fiber. Journal of Lightwave Technology, 38, 4504-4512(2020).

    [5] Y JEONG, C A CODEMARD et al. Erbium:Ytterbium codoped large-core fiber laser with 297-W continuous-wave output power. IEEE Journal of Selected Topics in Quantum Electronics, 13, 573-579(2007).

    [6] Liang DONG, T MATNIYAZ, MT KALICHEVSKY-DONG et al. Modeling Er/Yb fiber lasers at high powers. Optics Express, 28, 16244-16255(2020).

    [7] B MORASSE, S AGGER, C HOVINGTON et al. 10W ASE-free single-mode high-power double-cladding Er3+-Yb3+ amplifier, 6453, 24-28(2007).

    [8] Xiaoyun TANG, Qun HAN, Huiling SONG et al. Numerical investigation of the thermal effect on Yb-cavity-copumped Er/Yb codoped fiber amplifiers. Applied Optics, 57, 1541-1547(2018).

    [9] Xiaoyun TANG, Qun HAN, Xueru ZHAO et al. Method for estimating the Stark splitting of rare-earth ions from the measured cross-section spectra. Applied Optics, 57, 8573-8577(2018).

    [10] A YUSIM, J BARSALOU, D GAPONTSEV et al. 100 watt single-mode CW linearly polarized all-fiber format, 5709, 69-77(1).

    [11] A SHIRAKAWA, H SUZUKI, M TANISHO et al. Yb-ASE-free Er amplification in short-wavelength filtered Er:Yb photonic-crystal fiber, 1966-1968(2008).

    [12] T MATNIYAZ, Fanting KONG, M T KALICHEVSKY-DONG et al. Record 302W single-mode power from an Er/Yb fiber MOPA. Optics Letters, 45, 2910-2913(2020).

    [13] D CREEDEN, H PRETORIUS, J LIMONGELLI et al. Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and. Applications, 9728, 92782L(50).

    [14] O DE VARONA, W FITTKAU, P BOOKER et al. Single-frequency fiber amplifier at 1.5 µm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors. Optics Express, 25, 24880-24892(2017).

    [15] Shang WANG, Zhaojun LIU, Zhigang ZHAO et al. 18 W single-frequency 1550 nm Er:Yb co-doped fiber amplifier cladding-pumping at 1018 nm. Optics Communications, 464, 125498(2020).

    [16] O DE VARONA, M STEINKE, J NEUMANN et al. All-fiber, single-frequency, and single-mode Er3+:Yb3+ fiber amplifier at 1556nm core-pumped at 1018nm. Optics Letters, 43, 2632-2635(2018).

    [17] Qun HAN, Jiping NING, Weiyi ZHANG等. ASE suppression method for high power pumped Er-Yb co-doped fiber amplifiers. Acta Photonica Sinica, 29, 252-257(2009).

    [18] Qun HAN, Yunzhi YAO, Xiaoyun TANG et al. Highly efficient Er-Yb codoped double-clad fiber amplifier with an Yb-band resonant cavity. Laser Physics Letters, 14(2017).

    [19] Qun HAN, Wenchuan YAN, Yunzhi YAO et al. Optimal design of Er/Yb co-doped fiber amplifiers with an Yb-band fiber Bragg grating. Photonics Research, 4, 53-56(2016).

    [20] Xueru ZHAO, Qun HAN, Dan WANG et al. Optimal design of high-power cascade co-pumping Er/Yb-codoped fiber lasers. Optics Letters, 44, 1100-1103(2019).

    [21] Qun HAN, Jiping NING, Zhaoxia SHENG. Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers. IEEE Journal of Quantum Electronics, 46, 1535-1541(2010).

    [22] M STEINKE, A CROTEAU, C PARé et al. Co-seeded Er3+:Yb3+ single frequency fiber amplifier with 60 W output power and over 90% TEM(00) content. Optics Express, 22, 16722-16730(2014).

    [23] P BOOKER, O DE VARONA, P WESSELS et al. Numerical investigations of off-resonant pumped Er3+ :Yb3+ codoped fibre amplifiers(2017).

    [24] Dong XUE, Jun ZHOU, Qihong LOU等. Thermal effect and power limit in high power double-clad fiber laser. High Power Laser and Particle Beams, 21, 1013-1018(2009).

    [25] Yong WANG, Changqing XU, PO Hong. Thermal effects in kilowatt fiber lasers. IEEE Photonics Technology Letters, 16, 63-65(2004).

    [26] B ZINTZEN, T LANGER, J GEIGER et al. Heat transport in solid and air-clad fibers for high-power fiber lasers. Optics Express, 15, 16787-16793(2007).

    [27] J W DAWSON, M J MESSERLY, R J BEACH et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Optics Express, 16, 13240-13266(2008).

    Dan WANG, Qun HAN, Panpan NIU, Tiegen LIU. Experimental Research on High Power Cascade Co-pumping Erbium-Ytterbium Co-doped Fiber Laser[J]. Acta Photonica Sinica, 2021, 50(6): 138
    Download Citation