[1] LI Shuzhen, YAN Haochun, LIU Tao, et al. China Build Mater Sci Technol, 2022, 31(1): 79-82.
[2] BAI Mei. Price: Theory Pract, 2021(4): 9.
[3] JIANG J, YE B, LIU J. Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research[J]. Renew Sustain Energy Rev, 2019, 112: 813-33.
[4] LIU Yang. China Build Mater, 2021(3): 5.
[5] DING Meirong. China Cem, 2022(5): 3.
[6] ATMACA A, YUMRUTA? R. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry[J]. Appl Therm Eng, 2014, 66(1/2): 435-444.
[7] MADLOOL N A, SAIDUR R, RAHIM N A, et al. An overview of energy savings measures for cement industries[J]. Renew Sustain Energy Rev, 2013, 19: 18-29.
[8] WU W N, LIU X Y, HU Z, et al. Improving the sustainability of cement clinker calcination process by assessing the heat loss through kiln shell and its influencing factors: A case study in China[J]. J Clean Prod, 2019, 224: 132-141.
[9] DING Yingying, ZHANG Weiqi, CHEN Ning, et al. China Ceram, 2018, 54(7): 4.
[10] YIN Hongfeng, DANG Juanling, XIN Yalou, et al. Mater Rev, 2018, 32(15): 9.
[11] LI S, LI N. Effects of composition and temperature on porosity and pore size distribution of porous ceramics prepared from Al(OH)3 and kaolinite gangue[J]. Ceram Int, 2007, 33(4): 551-556.
[12] CHEN Q, YAN W, YAN J, et al. Microstructures and strengths of microporous MgO-Al2O3 ceramics from Al(OH)3 and calcined magnesite[J]. J AMER CERAM SOC, 2022, 105(12): 7741-7750.
[13] LIU Y, YIN H, TANG Y, et al. Synthesis mechanism and properties of lightweight mullite-corundum refractories obtained through high temperature liquid-assisted micrometer-scale Kirkendall effect[J]. Ceram Int, 2021, 47(7): 9234-9244.
[14] YIN H, GAO K, WAN Q, et al. A comparative study on the slag resistance of dense corundum-spinel refractory and lightweight corundum-spinel refractory with density gradient[J]. Ceram Int, 2021, 47(15): 21310-21318.
[15] LI L P, YAN Y, FAN X Z, et al. Low-temperature synthesis of calcium-hexaluminate/magnesium-aluminum spinel composite ceramics[J]. J Eur Ceram Soc, 2015, 35(10): 2923-2931.
[16] LIU Yangai, WEI Lixian, FANG Minghao, et al. J Chin Ceram Soc, 2010(10): 1944-1947.
[17] G?BBELS M, WOERMANN E, JUNG J. The Al-Rich part of the System CaO-Al2O3-MgO[J]. J Solid State Chem, 1995, 120(2): 358-363.
[18] DE AZA P, PE?A P, AZA S. Ternary System Al2O3-MgO-CaO: I, primary phase field of crystallization of spinel in the subsystem MgAl2O4-CaAl4O7-CaO-MgO[J]. J AMER CERAM SOC, 2004, 82: 2193-203.
[19] AZA P D, IGLESIAS J, PE?A P, et al. Ternary system Al2O3-MgO-CaO: Part II, Phase relationships in the subsystem Al2O3-MgAl2O4-CaAl4O7[J]. J AMER CERAM SOC, 2004, 83: 919-927.
[20] LI B, LI G, CHEN H, et al. Physical and mechanical properties of hot-press sintering ternary CM2A8 (CaMg2Al16O27) and C2M2A14 (Ca2Mg2Al28O46) ceramics[J]. J Adv Ceram, 2018, 7(3): 229-236.
[21] WANG Enhui, CHEN Junhonog, HOU Xinmei. Chin J Eng, 2019, 41(12): 1520-1526.
[22] LIU Yun, YIN Hongfeng, TANG Yun, et al. J Chin Ceram Soc, 2023, 51(6): 1499-1509.