[1] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325 (5947): 1513–1515
[2] Kriegler C E, Rill M S, Linden S, Wegener M M. Bianisotropic photonic metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(2): 367–375
[3] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
[4] Guo Q, Gao W, Chen J, Liu Y, Zhang S. Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials. Physical Review Letters, 2015, 115(6): 067402
[5] Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S. Experimental demonstration of topological effects in bianisotropic metamaterials. Scientific Reports, 2016, 6(1): 22270
[6] Moritake Y, Tanaka T. Bi-anisotropic Fano resonance in three-dimensional metamaterials. Scientific Reports, 2018, 8(1): 9012
[7] Yu Y Z, Kuo C Y, Chern R L, Chan C T. Photonic topological semimetals in bianisotropic metamaterials. Scientific Reports, 2019, 9(1): 18312
[8] Pfeiffer C, Grbic A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Physical Review Applied, 2014, 2(4): 044011
[9] feiffer C, Zhang C, Ray V, Guo L J, Grbic A. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica, 2016, 3(4): 427– 432
[10] Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Physical Review Letters, 2014, 113(2): 023902
[11] Odit M, Kapitanova P, Belov P, Alaee R, Rockstuhl C, Kivshar Y S. Experimental realisation of all-dielectric bianisotropic metasurfaces. Applied Physics Letters, 2016, 108(22): 221903
[12] Epstein A, Eleftheriades G V. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3880–3895
[13] Asadchy V S, Díaz-Rubio A, Tretyakov S A. Bianisotropic metasurfaces: physics and applications. Nanophotonics, 2018, 7 (6): 1069–1094
[14] Li J, Shen C, Díaz-Rubio A, Tretyakov S A, Cummer S A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nature Communications, 2018, 9(1): 1342
[15] Li J, Díaz-Rubio A, Shen C, Jia Z, Tretyakov S A, Cummer S. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Physical Review Applied, 2019, 11(2): 024016
[16] Chen X, Wu B I, Kong J A, Grzegorczyk T M. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Physical Review E, 2005, 71(4): 046610
[17] Li Z, Aydin K, Ozbay E. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Physical Review E, 2009, 79(2): 026610
[18] Ouchetto O, Qiu CW, Zouhdi S, Li LW, Razek A. Homogenization of 3-D periodic bianisotropic metamaterials. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(11): 3893–3898
[19] Hasar U C, Muratoglu A, Bute M, Barroso J J, Ertugrul M. Effective constitutive parameters retrieval method for bianisotropic metamaterials using waveguide measurements. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1488–1497
[20] Zhao J, Jing X, Wang W, Tian Y, Zhu D, Shi G. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Optics & Laser Technology, 2017, 95: 56–62
[21] Shaltout A, Shalaev V, Kildishev A. Homogenization of bianisotropic metasurfaces. Optics Express, 2013, 21(19): 21941– 21950
[22] Albooyeh M, Tretyakov S, Simovski C. Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework. Annalen der Physik, 2016, 528(9– 10): 721–737
[23] Lindell I V, Sihvola A H, Viitanen A J, Tretyakov S A. Electromagnetic Waves in Chiral and Bi-Isotropic Media. Boston: Artech House on Demand, 1994
[24] Serdiukov A, Semchenk I, Tertyakov S, Sihvola A. Electromagnetics of Bi-Anisotropic Materials-Theory and Application. Singapore: Gordon and Breach, 2001
[25] Sersic I, Tuambilangana C, Kampfrath T, Koenderink A F. Magnetoelectric point scattering theory for metamaterial scatterers. Physical Review B, 2011, 83(24): 245102
[26] Peng L, Zheng X, Wang K, Sang S, Chen Y, Wang Y G. Layer-bylayer design of bianisotropic metamaterial and its homogenization. Progress In Electromagnetics Research, 2017, 159: 39–47
[27] Xu J, Wu B, Chen Y. Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: a decoupled case. Optics Express, 2015, 23(9): 11566–11575
[28] Multiphysics COMSOL. 5.2: a finite element analysis, solver and simulation software
[29] Dong J W, Chen X D, Zhu H, Wang Y, Zhang X. Valley photonic crystals for control of spin and topology. Nature Materials, 2017, 16 (3): 298–302 === Zhongfei Xiong received his B.S. degree in Optoelectronic Information Engineering from Huazhong University of Science and Technology, China. He is currently pursuing his Ph.D. degree in Optical Engineering at School of Optical and Electronic Information, Huazhong University of Science and Technology. His major research interests include topological photonics, symmetry in optics and thermodynamics optics.