[1] R. Vollmerhausen, E. L. Jacobs, R. G. Driggers. New metric for predicting target acquisition performance. Opt. Eng., 43, 2806-2818(2004).
[2] J. A. Ratches et al. Night vision laboratory static performance model for thermal viewing systems(1975).
[3] J. Johnson. Analysis of image forming systems. Proc. SPIE, 513, 761(1985).
[4] G. L. DesAutels. A modern review of the Johnson image resolution criterion. Optik, 249, 168246(2021).
[5] T. Sjaardema, C. S. Smith, G. C. Birch. History and evolution of the Johnson criteria(2015).
[6] N. S. Kopeika et al. Atmospheric effects on target acquisition. Proc. SPIE, 8355, 83550D(2012).
[7] Y. Bian et al. Passive imaging through dense scattering media. Photon. Res., 12, 134-140(2023).
[8] Q. Z. Wang et al. Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium. Opt. Lett., 20, 1498-500(1995).
[9] S. G. Demos, R. R. Alfano. Optical polarization imaging. Appl. Opt., 36, 150-155(1997).
[10] A. Alfalou, C. Brosseau. Chapter two: recent advances in optical image processing. Prog. Opt., 60, 119-262(2015).
[11] Y. Qi et al. A comprehensive overview of image enhancement techniques. Arch. Comput. Methods Eng., 29, 583-607(2021).
[12] C.-H. Hsieh. Dehazed image enhancement by a gamma correction with global limits, 1-4(2019).
[13] N. Sharma, V. Kumar, S. K. Singla. Single image defogging using deep learning techniques: past, present and future. Arch. Comput. Methods Eng., 28, 4449-4469(2021).
[14] A. Choudhury, S. J. Daly. HDR display quality evaluation by incorporating perceptual component models into a machine learning framework. Signal Process. Image Commun., 74, 201-217(2019).
[15] P. G. J. Barten. Contrast sensitivity of the human eye and its effects on image qualit. Soc. Photo-Opt. Instrument. Eng., 25-27(1999).
[16] R. Hegadi. Image processing: research opportunities and challenges. Nat. Seminar on Res. Comput., 36, 1-5(2010).
[17] C. Sharma, A. Manhar. Development of image processing tools. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., 9, 535-543(2023).
[18] S. N. Ahmed. Position-sensitive detection and imaging. Physics and engineering of radiation detection, 435-475(2015).
[19] R. Pierce, J. Ramaprasad, E. Eisenberg. Optical attenuation in fog and clouds. Proc. SPIE, 4530(2001).
[20] N. S. Kopeika, S. C. Solomon, Y. Gencay. Wavelength variation of visible and near-infrared resolution through the atmosphere: dependence on aerosol and meteorological conditions. J. Opt. Soc. Am., 71, 892-901(1981).
[21] Y. Kuga, A. Ishimaru. Modulation transfer function and image transmission through randomly distributed spherical particles. J. Opt. Soc. Am. A, 2, 2330-2336(1985).
[22] I. Dror, N. S. Kopeika. Aerosol and turbulence modulation transfer functions: comparison measurements in the open atmosphere. Opt. Lett., 17, 1532-1534(1992).
[23] D. Sadot, N. S. Kopeika. Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function. J. Opt. Soc. Am. A, 10, 172-179(1993).
[24] V. Lakshminarayanan. Light detection and sensitivity. Handbook of Visual Display Technology(2012).
[25] T. Kimpe, T. Tuytschaever. Increasing the number of gray shades in medical display systems—how much is enough?. J. Digit Imaging, 20, 422-432(2007).
[26] F. A. Rosell, R. H. Willson. Performance synthesis (electro-optical sensors)(1971).
[27] W. Pan et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Photonics, 11, 726-732(2017). https://doi.org/10.1038/s41566-017-0012-4
[28] L. Pan et al. Determination of X-ray detection limit and applications in perovskite X-ray detectors. Nature Commun., 12, 5258(2021).
[29] Y. Huang et al. Multi-view optical image fusion and reconstruction for defogging without a prior in-plane. Photonics, 8, 454(2021).
[30] L. Chen et al. Multi-channel visibility distribution measurement via optical imaging. Photonics, 10, 945(2023).
[31] M. Tico. Multi-frame image denoising and stabilization, 1-4(2008).
[32] A. Nazir, M. S. Younis, M. K. Shahzad. MFNR: multi-frame method for complete noise removal of all PDF types in multi-dimensional data using KDE(2020).
[33] S. D.-I. Schuster et al. Noise variance and signal-to-noise ratio estimation from spectral data, 1-6(2019).
[34] K. He, J. Sun, X. J. Tang. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell., 33, 2341-2353(2011).
[35] K. J. Zuiderveld. Contrast limited adaptive histogram equalization. Graphics Gems IV, 474-485(1994).
[36] A. H. A. Kamel, A. S. Shaqlaih, A. Rozyyev. Which friction factor model is the best? a comparative analysis of model selection criteria. J. Energy Power Eng., 12, 158-168(2018).
[37] A. Foi et al. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process., 17, 1737-1754(2008).
[38] A. N. Khan et al. Atmospheric turbulence and fog attenuation effects in controlled environment FSO communication links. IEEE Photonics Technol. Lett., 34, 1341-1344(2022).
[39] D. L. Fried. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am., 56, 1372-1379(1966).
[40] E. Bayati et al. Role of refractive index in metalens performance. Appl. Opt., 58, 1460-1466(2019).
[41] B. Tharun et al. Contrast computation methods for interferometric measurement of sensor modulation transfer function. J. Electron. Imaging, 27, 013015(2018).
[42] K. A. Krapels et al. Atmospheric turbulence modulation transfer function for infrared target acquisition modeling. Opt. Eng., 40, 1906-1913(2001).
[43] S. Zhang et al. MTF measurement by slanted-edge method based on improved Zernike moments. Sensors, 23, 509(2023).