• Advanced Photonics Nexus
  • Vol. 3, Issue 6, 066004 (2024)
Libang Chen1, Jun Yang1, Lingye Chen1, Yuyang Shui2..., Yikun Liu1,2,* and Jianying Zhou2|Show fewer author(s)
Author Affiliations
  • 1Sun Yat-Sen University (Zhuhai Campus), Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, School of Physics and Astronomy, Zhuhai, China
  • 2Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.3.6.066004 Cite this Article Set citation alerts
    Libang Chen, Jun Yang, Lingye Chen, Yuyang Shui, Yikun Liu, Jianying Zhou, "Harnessing optical imaging limit through atmospheric scattering media," Adv. Photon. Nexus 3, 066004 (2024) Copy Citation Text show less
    References

    [1] R. Vollmerhausen, E. L. Jacobs, R. G. Driggers. New metric for predicting target acquisition performance. Opt. Eng., 43, 2806-2818(2004).

    [2] J. A. Ratches et al. Night vision laboratory static performance model for thermal viewing systems(1975).

    [3] J. Johnson. Analysis of image forming systems. Proc. SPIE, 513, 761(1985).

    [4] G. L. DesAutels. A modern review of the Johnson image resolution criterion. Optik, 249, 168246(2021).

    [5] T. Sjaardema, C. S. Smith, G. C. Birch. History and evolution of the Johnson criteria(2015).

    [6] N. S. Kopeika et al. Atmospheric effects on target acquisition. Proc. SPIE, 8355, 83550D(2012).

    [7] Y. Bian et al. Passive imaging through dense scattering media. Photon. Res., 12, 134-140(2023).

    [8] Q. Z. Wang et al. Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium. Opt. Lett., 20, 1498-500(1995).

    [9] S. G. Demos, R. R. Alfano. Optical polarization imaging. Appl. Opt., 36, 150-155(1997).

    [10] A. Alfalou, C. Brosseau. Chapter two: recent advances in optical image processing. Prog. Opt., 60, 119-262(2015).

    [11] Y. Qi et al. A comprehensive overview of image enhancement techniques. Arch. Comput. Methods Eng., 29, 583-607(2021).

    [12] C.-H. Hsieh. Dehazed image enhancement by a gamma correction with global limits, 1-4(2019).

    [13] N. Sharma, V. Kumar, S. K. Singla. Single image defogging using deep learning techniques: past, present and future. Arch. Comput. Methods Eng., 28, 4449-4469(2021).

    [14] A. Choudhury, S. J. Daly. HDR display quality evaluation by incorporating perceptual component models into a machine learning framework. Signal Process. Image Commun., 74, 201-217(2019).

    [15] P. G. J. Barten. Contrast sensitivity of the human eye and its effects on image qualit. Soc. Photo-Opt. Instrument. Eng., 25-27(1999).

    [16] R. Hegadi. Image processing: research opportunities and challenges. Nat. Seminar on Res. Comput., 36, 1-5(2010).

    [17] C. Sharma, A. Manhar. Development of image processing tools. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., 9, 535-543(2023).

    [18] S. N. Ahmed. Position-sensitive detection and imaging. Physics and engineering of radiation detection, 435-475(2015).

    [19] R. Pierce, J. Ramaprasad, E. Eisenberg. Optical attenuation in fog and clouds. Proc. SPIE, 4530(2001).

    [20] N. S. Kopeika, S. C. Solomon, Y. Gencay. Wavelength variation of visible and near-infrared resolution through the atmosphere: dependence on aerosol and meteorological conditions. J. Opt. Soc. Am., 71, 892-901(1981).

    [21] Y. Kuga, A. Ishimaru. Modulation transfer function and image transmission through randomly distributed spherical particles. J. Opt. Soc. Am. A, 2, 2330-2336(1985).

    [22] I. Dror, N. S. Kopeika. Aerosol and turbulence modulation transfer functions: comparison measurements in the open atmosphere. Opt. Lett., 17, 1532-1534(1992).

    [23] D. Sadot, N. S. Kopeika. Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function. J. Opt. Soc. Am. A, 10, 172-179(1993).

    [24] V. Lakshminarayanan. Light detection and sensitivity. Handbook of Visual Display Technology(2012).

    [25] T. Kimpe, T. Tuytschaever. Increasing the number of gray shades in medical display systems—how much is enough?. J. Digit Imaging, 20, 422-432(2007).

    [26] F. A. Rosell, R. H. Willson. Performance synthesis (electro-optical sensors)(1971).

    [27] W. Pan et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Photonics, 11, 726-732(2017). https://doi.org/10.1038/s41566-017-0012-4

    [28] L. Pan et al. Determination of X-ray detection limit and applications in perovskite X-ray detectors. Nature Commun., 12, 5258(2021).

    [29] Y. Huang et al. Multi-view optical image fusion and reconstruction for defogging without a prior in-plane. Photonics, 8, 454(2021).

    [30] L. Chen et al. Multi-channel visibility distribution measurement via optical imaging. Photonics, 10, 945(2023).

    [31] M. Tico. Multi-frame image denoising and stabilization, 1-4(2008).

    [32] A. Nazir, M. S. Younis, M. K. Shahzad. MFNR: multi-frame method for complete noise removal of all PDF types in multi-dimensional data using KDE(2020).

    [33] S. D.-I. Schuster et al. Noise variance and signal-to-noise ratio estimation from spectral data, 1-6(2019).

    [34] K. He, J. Sun, X. J. Tang. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell., 33, 2341-2353(2011).

    [35] K. J. Zuiderveld. Contrast limited adaptive histogram equalization. Graphics Gems IV, 474-485(1994).

    [36] A. H. A. Kamel, A. S. Shaqlaih, A. Rozyyev. Which friction factor model is the best? a comparative analysis of model selection criteria. J. Energy Power Eng., 12, 158-168(2018).

    [37] A. Foi et al. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process., 17, 1737-1754(2008).

    [38] A. N. Khan et al. Atmospheric turbulence and fog attenuation effects in controlled environment FSO communication links. IEEE Photonics Technol. Lett., 34, 1341-1344(2022).

    [39] D. L. Fried. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am., 56, 1372-1379(1966).

    [40] E. Bayati et al. Role of refractive index in metalens performance. Appl. Opt., 58, 1460-1466(2019).

    [41] B. Tharun et al. Contrast computation methods for interferometric measurement of sensor modulation transfer function. J. Electron. Imaging, 27, 013015(2018).

    [42] K. A. Krapels et al. Atmospheric turbulence modulation transfer function for infrared target acquisition modeling. Opt. Eng., 40, 1906-1913(2001).

    [43] S. Zhang et al. MTF measurement by slanted-edge method based on improved Zernike moments. Sensors, 23, 509(2023).