• Optics and Precision Engineering
  • Vol. 32, Issue 14, 2256 (2024)
Liying ZHU, Sen WANG*, Aiping SHEN, and Xuangang LI
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming650500, China
  • show less
    DOI: 10.37188/OPE.20243214.2256 Cite this Article
    Liying ZHU, Sen WANG, Aiping SHEN, Xuangang LI. Visual inspection of soldering defects on board surfaces against complex backgrounds[J]. Optics and Precision Engineering, 2024, 32(14): 2256 Copy Citation Text show less
    Architecture of PCBNet
    Fig. 1. Architecture of PCBNet
    Dilation and extrusion convolution
    Fig. 2. Dilation and extrusion convolution
    DeConv receptive field
    Fig. 3. DeConv receptive field
    Architecture of DeCSPlayer
    Fig. 4. Architecture of DeCSPlayer
    SPD-Conv
    Fig. 5. SPD-Conv
    Subtle feature enhancement module
    Fig. 6. Subtle feature enhancement module
    Schematic diagram of feature extraction in the PE module
    Fig. 7. Schematic diagram of feature extraction in the PE module
    Schematic diagram of PCB surface soldering defects
    Fig. 8. Schematic diagram of PCB surface soldering defects
    Image acquisition and detection system
    Fig. 9. Image acquisition and detection system
    Visualization of detection results for each algorithm
    Fig. 10. Visualization of detection results for each algorithm
    Visualization of detection results for each algorithm
    Fig. 11. Visualization of detection results for each algorithm
    NumberDilationLayersOutput size
    0-Focus-320×320×32
    1-SPD-Conv-160×160×64
    21DeCSPlayer-160×160×64
    3-SPD-Conv280×80×128
    42DeCSPlayer-80×80×128
    5-SPD-Conv240×40×256
    63DeCSPlayer-40×40×256
    7-SPD-Conv220×20×512
    8-SPP-20×20×512
    95DeCSPlayer-20×20×512
    Table 1. Dilatation rate configuration table in the backbone
    项目参数
    相机型号MV-CS060-10UC-PRO
    光圈F4
    焦距8 mm
    光源类型Ring light
    曝光时间50 000 μs
    分辨率3 072×2 048
    物距100 mm
    视野50 mm×35 mm
    Table 2. Camera parameters during data collection
    缺陷类别缺陷数目
    Aiguille2 487
    Dissymmetry1 667
    Holes1 923
    Interconnect pad4 069
    Table 3. Number of defects in various categories in the dataset
    方法图像尺寸mAP0.5/%mAP0.5:0.95/%Params/MbFPS
    YOLOX-S64092.560.88.94106
    YOLOX-S+SFEM64093.664.79.7389
    YOLOX-S+DeConv64094.564.69.3690
    YOLOX-S+SPD-Conv64094.364.913.64100
    YOLOX-S+SPD-Conv+SFEM64094.864.714.4390
    YOLOX-S+SPD-Conv+SFEM+DeConv64095.365.014.8586
    Table 4. Results of the ablation study
    方法mAP0.5/%mAP0.5:0.95/%Params /MbFPS
    r=294.664.715.9285
    r=395.365.014.8586
    r=495.164.914.5487
    r=594.765.114.4187
    Table 5. Impact of different r values in DeConv on the optimal model accuracy
    空洞率

    mAP0.5

    /%

    mAP0.5:0.95

    /%

    Params

    /Mb

    FPS
    2,2,2,295.065.414.8587
    1,2,1,295.265.314.8588
    1,6,12,1895.365.014.8586
    1,2,5,794.965.014.8586
    1,2,3,595.465.514.8583
    1,2,5,194.965.014.8587
    1,2,9,1295.165.214.8586
    Table 6. Impact of different dilation values in the backbone of PCBNet on the optimal model accuracy
    样本数

    mAP0.5

    /%

    mAP0.5:0.95

    /%

    Params

    /Mb

    FPS
    80%95.465.514.8587
    70%95.265.314.8587
    60%95.065.214.8587
    Table 7. Performance statistics of the model with different numbers of training samples
    模型主干AP0.5(%)

    mAP0.5

    /%

    mAP0.75

    /%

    mAP0.5∶0.95

    /%

    FPS

    Params

    /Mb

    ADHI-P
    Faster-RCNNresnet5061.863.866.785.369.415.328.530136.75
    CenterNetresnet5088.791.795.392.792.161.055.210132.67
    RetinaNetresnet5083.887.991.892.989.161.054.95336.39
    EfficientDetv1EfficientNet-B050.868.871.086.269.225.432.7333.83
    YOLOV4-Tiny63.784.889.689.181.828.337.91925.88
    YOLOV5-sC380.880.992.091.686.356.051.0927.07
    YOLOV8-sC2f90.993.994.994.493.576.863.411411.14
    CFPNet-87.790.696.196.592.771.960.88913.14
    YOLOX-s-86.792.195.695.592.572.360.81068.94
    YOLOX-m-90.892.197.396.493.875.563.07425.28
    YOLO-PCB-54.080.089.564.271.965.852.6958.9
    MDVI-75.887.794.093.987.843.346.016112.22
    RTDD-LCD-68.886.893.992.885.634.941.67325.08
    PCBNet-91.294.897.498.295.479.065.58314.85
    Table 8. Results compared to other methods(For statistical convenience, aiguille is simplified as A, disymmetry is simplified as D, holes is simplified as H, and Interconnect pad is simplified as I-P)
    任务图像尺寸数目
    训练600×600×38 460
    验证600×600×3961
    测试600×600×31 067
    Table 9. Dataset splitting
    模型模型版本主干mAP0.5/%mAP0.75/%mAP0.5∶0.95/%FPSParams/Mb
    Faster-RCNN-resnet5072.611.228.430136.75
    CenterNet-resnet5097.746.352.110132.67
    RetinaNet-resnet5092.743.449.35336.39
    EfficientDetv1-EfficientNet-B085.638.643.4333.83
    YOLOV4-Tiny-97.232.646.61925.88
    YOLOV5sC398.360.056.6927.07
    YOLOV8sC2f99.278.465.211411.14
    CFPNets-98.865.359.38913.14
    YOLOxs-98.259.657.01068.94
    YOLOXm-99.186.776.57425.28
    YOLO-PCB--96.771.561.3958.9
    MDVI--98.241.450.516112.22
    RTDD-LCD--97.639.049.17325.08
    PCBNet--99.588.773.28314.85
    Table 10. Results compared to other methods
    Liying ZHU, Sen WANG, Aiping SHEN, Xuangang LI. Visual inspection of soldering defects on board surfaces against complex backgrounds[J]. Optics and Precision Engineering, 2024, 32(14): 2256
    Download Citation