• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 10, 2700 (2023)
YIN Chaofan1,2,*, LIU Zhengrong1, SUN Yueyue1, ZHOU Yucun2..., LUO Ting3, WU Kai1 and ZHOU Jun1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    YIN Chaofan, LIU Zhengrong, SUN Yueyue, ZHOU Yucun, LUO Ting, WU Kai, ZHOU Jun. Research Progress on Proton-Conducting Reversible Solid Oxide Cells Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2700 Copy Citation Text show less
    References

    [1] CAO J F, JI Y X, SHAO Z P. Perovskites for protonic ceramic fuel cells: a review[J]. Energy Environ Sci, 2022, 15(6): 2200-2232.

    [4] RASAKI S A, LIU C Y, LAO C S, et al. A review of current performance of rare earth metal-doped Barium zirconate perovskite: The promising electrode and electrolyte material for the protonic ceramic fuel cells[J]. Prog Solid State Chem, 2021, 63: 100325.

    [5] IWAHARA H, ESAKA T, UCHIDA H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ion, 1981, 3/4: 359-363.

    [6] BELLO I T, ZHAI S, HE Q J, et al. Materials development and prospective for protonic ceramic fuel cells[J]. Int J Energy Res, 2021, 46: 2212-2240.

    [7] DUAN C C, HUANG J, SULLIVAN N, et al. Proton-conducting oxides for energy conversion and storage[J]. Appl Phys Rev, 2020, 7(1): 011314.

    [8] LEI L B, ZHANG J H, YUAN Z H, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Adv Funct Mater, 2019, 29(37): 1903805.

    [9] TIAN H C, LUO Z Y, SONG Y F, et al. Protonic ceramic materials for clean and sustainable energy: Advantages and challenges[J]. Int Mater Rev, 2023, 68(3): 272-300.

    [10] ZHANG J, RICOTE S, HENDRIKSEN P V, et al. Advanced materials for thin-film solid oxide fuel cells: Recent progress and challenges in boosting the device performance at low temperatures[J]. Adv Funct Mater, 2022, 32(22): 2111205.

    [11] IWAHARA H, UCHIDA H, MAEDA N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes[J]. J Power Sources, 1982, 7(3): 293-301.

    [12] UCHIDA H, MAEDA N, IWAHARA H. Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures[J]. Solid State Ion, 1983, 11(2): 117-124.

    [13] IWAHARA H, UCHIDA H, YAMASAKI I. High-temperature steam electrolysis using SrCeO3-based proton conductive solid electrolyte[J]. Int J Hydrog Energy, 1987, 12(2): 73-77.

    [14] IWAHARA H, UCHIDA H, ONO K, et al. Proton conduction in sintered oxides based on BaCeO3[J]. J Electrochem Soc, 1988, 135(2): 529-533.

    [15] IWAHARA H, YAJIMA T, HIBINO T, et al. Protonic conduction in calcium, strontium and Barium zirconates[J]. Solid State Ion, 1993, 61(1-3): 65-69.

    [16] IWAHARA H. Technological challenges in the application of proton conducting ceramics[J]. Solid State Ion, 1995, 77: 289-298.

    [17] IWAHARA H. Proton conducting ceramics and their applications[J]. Solid State Ion, 1996, 86-88: 9-15.

    [18] KREUER K. H/D isotope effect of proton conductivity and proton conduction mechanism in oxides[J]. Solid State Ion, 1995, 77: 157-162.

    [19] AGMON N. The grotthuss mechanism[J]. Chem Phys Lett, 1995, 244(5/6): 456-462.

    [21] ZHONG Z M. Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems[J]. Solid State Ion, 2007, 178(3-4): 213-220.

    [22] BABILO P, HAILE S M. Enhanced sintering of yttrium-doped Barium zirconate by addition of ZnO[J]. J Am Ceram Soc, 2005, 88(9): 2362-2368.

    [23] YANG L, WANG S Z, BLINN K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr(0.1)Ce(0.7)Y(0.2-x)Yb(x)O(3-delta)[J]. Science, 2009, 326(5949): 126-129.

    [24] TONG J H, CLARK D, BERNAU L, et al. Proton-conducting yttrium-doped Barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method[J]. Solid State Ion, 2010, 181(33/34): 1486-1498.

    [27] CHOI S, KUCHARCZYK C J, LIANG Y G, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nat Energy, 2018, 3(3): 202-210.

    [28] CHOI S, DAVENPORT T C, HAILE S M. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: Exceptional reversibility, stability, and demonstrated faradaic efficiency[J]. Energy Environ Sci, 2019, 12(1): 206-215.

    [29] CHOI M, PAIK J, KIM D, et al. Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes[J]. Energy Environ Sci, 2021, 14(12): 6476-6483.

    [30] GUO R, HE T M. High-entropy perovskite electrolyte for protonic ceramic fuel cells operating below 600 ℃[J]. ACS Materials Lett, 2022, 4(9): 1646-1652.

    [31] HE F, GAO Q N, LIU Z Q, et al. A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures[J]. Adv Energy Mater, 2021, 11(19): 2003916.

    [32] LUO Z Y, ZHOU Y C, HU X Y, et al. Highly conductive and durable Nb(Ta)-doped proton conductors for reversible solid oxide cells[J]. ACS Energy Lett, 2022, 7(9): 2970-2978.

    [33] LUO Z Y, ZHOU Y C, HU X Y, et al. A new class of proton conductors with dramatically enhanced stability and high conductivity for reversible solid oxide cells[J]. Small, 2023, 19(17): e2208064.

    [34] MURPHY R, ZHOU Y C, ZHANG L, et al. A new family of proton-conducting electrolytes for reversible solid oxide cells: BaHfxCe0.8-xY0.1Yb0.1O3-δ[J]. Adv Funct Mater, 2020, 30(35): 2002265.

    [35] YANG W J, WANG L, LI Y H, et al. An easily sintered, chemically stable indium and tin co-doped barium hafnate electrolyte for hydrogen separation[J]. J Alloys Compd, 2021, 868: 159117.

    [36] YANG W J, WANG L, LI Y H, et al. Properties of Hf doped BaZr0.8Y0.2O3-δ protonic conductor[J]. Ceram Int, 2021, 47(7): 9273-9286.

    [37] LUO Z Y, ZHOU Y C, HU X Y, et al. Critical role of acceptor dopants in designing highly stable and compatible proton-conducting electrolytes for reversible solid oxide cells[J]. Energy Environ Sci, 2022, 15(7): 2992-3003.

    [38] SHAH M A K Y, LU Y Z, MUSHTAQ N, et al. Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells[J]. Renew Energy, 2022, 196: 901-911.

    [39] XIA C, MI Y Q, WANG B Y, et al. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells[J]. Nat Commun, 2019, 10(1): 1707.

    [40] HAN D L, ZHONG P, ZHANG X R, et al. Selecting the best dopant sites in proton-conducting pyrochlore oxides (La2(Nb1-xYx)2O7-δ) by probing hydration-induced local distortion[J]. J Mater Chem A, 2022, 10(16): 8887-8897.

    [41] HUANG W L, DING Y S, LI Y, et al. Conduction properties and transport number of double perovskite barium tantalate ceramic[J]. J Alloys Compd, 2021, 851: 156901.

    [42] JAISWAL S K, YOON K J, SON J W, et al. Synthesis and investigation on stability and electrical conductivity of Ti-doped Ba3CaTa2-xTixO9 (0≤x≤1.0) complex oxides[J]. J Alloys Compd, 2019, 775: 736-741.

    [43] AN H, IM S, KIM J, et al. An unprecedented vapor-phase sintering activator for highly refractory proton-conducting oxides[J]. ACS Energy Lett, 2022, 7(11): 4036-4044.

    [44] BAE K, KIM D H, CHOI H J, et al. High-performance protonic ceramic fuel cells with 1 mum thick Y: Ba(Ce, Zr)O3 electrolytes[J]. Adv Energy Mater, 2018, 8(25): 1801315.

    [45] CHOI S M, AN H, YOON K J, et al. Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte[J]. Appl Energy, 2019, 233/234: 29-36.

    [46] ZVONAREVA I, FU X Z, MEDVEDEV D, et al. Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes[J]. Energy Environ Sci, 2022, 15(2): 439-465.

    [48] HONG K, SUTANTO S N, LEE J A, et al. Ni-based bimetallic nano-catalysts anchored on BaZr0.4Ce0.4Y0.1Yb0.1O3-δ for internal steam reforming of methane in a low-temperature proton-conducting ceramic fuel cell[J]. J Mater Chem A, 2021, 9(10): 6139-6151.

    [49] HWANG S H, KIM S K, NAM J T, et al. Fabrication of an electrolyte-supported protonic ceramic fuel cell with nano-sized powders of Ni-composite anode[J]. Int J Hydrog Energy, 2021, 46(1): 1076-1084.

    [50] DUAN C C, KEE R J, ZHU H Y, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557(7704): 217-222.

    [51] DUAN C C, KEE R, ZHU H Y, et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production[J]. Nat Energy, 2019, 4(3): 230-240.

    [52] ZHANG H, ZHOU Y C, PEI K, et al. An efficient and durable anode for ammonia protonic ceramic fuel cells[J]. Energy Environ Sci, 2022, 15(1): 287-295.

    [53] HUA B, YAN N, LI M, et al. Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility[J]. Adv Mater, 2016, 28(40): 8922-8926.

    [54] DANILOV N, TARUTIN A, LYAGAEVA J, et al. CO2-promoted hydrogen production in a protonic ceramic electrolysis cell[J]. J Mater Chem A, 2018, 6(34): 16341-16346.

    [55] SHI N, XIE Y, HUAN D M, et al. Controllable CO2 conversion in high performance proton conducting solid oxide electrolysis cells and the possible mechanisms[J]. J Mater Chem A, 2019, 7(9): 4855-4864.

    [56] FAN Y, XI X A, LI J, et al. In-situ exsolved FeNi nanoparticles on perovskite matrix anode for co-production of ethylene and power from ethane in proton conducting fuel cells[J]. Electrochim Acta, 2021, 393: 139096.

    [57] LIU S B, LIU Q X, FU X Z, et al. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles[J]. Appl Catal B Environ, 2018, 220: 283-289.

    [58] ABDUL MALIK L, MAHMUD N A, MOHD AFFANDI N S, et al. Effect of nickel oxide-modified BaCe0.54Zr0.36Y0.1O2.95 as composite anode on the performance of proton-conducting solid oxide fuel cell[J]. Int J Hydrog Energy, 2021, 46(8): 5963-5974.

    [59] GAO J, MENG Y Q, HONG T, et al. Rational anode design for protonic ceramic fuel cells by a one-step phase inversion method[J]. J Power Sources, 2019, 418: 162-166.

    [60] GENG C L, YU X X, WANG P P, et al. The rapid one-step fabrication of bilayer anode for protonic ceramic fuel cells by phase inversion tape casting[J]. J Eur Ceram Soc, 2020, 40(8): 3104-3110.

    [61] PAN Y X, PEI K, ZHOU Y C, et al. A straight, open and macro-porous fuel electrode-supported protonic ceramic electrochemical cell[J]. J Mater Chem A, 2021, 9(17): 10789-10795.

    [62] LIU Z X, GU Y Y, BI L. Applications of electrospun nanofibers in solid oxide fuel cells - a review[J]. J Alloy Compd, 2023, 937: 168288.

    [63] LEE K R, TSENG C J, CHANG J K, et al. Nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode functional layer for proton-conducting solid oxide fuel cells[J]. J Power Sources, 2019, 436: 226863.

    [64] HOU M Y, PAN Y X, CHEN Y. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by an internal catalyst layer[J]. Sep Purif Technol, 2022, 297: 121483.

    [65] SHI N, XUE S S, XIE Y, et al. Co-generation of electricity and olefin via proton conducting fuel cells using (Pr0.3Sr0.7)0.9Ni0.1Ti0.9O3 catalyst layers[J]. Appl Catal B Environ, 2020, 272: 118973.

    [66] WEI T, QIU P, JIA L C, et al. Power and carbon monoxide co-production by a proton-conducting solid oxide fuel cell with La0.6Sr0.2Cr0.85Ni0.15O3-δ for on-cell dry reforming of CH4 by CO2[J]. J Mater Chem A, 2020, 8(19): 9806-9812.

    [67] LIANG M Z, ZHU Y J, SONG Y F, et al. A new durable surface nanoparticles-modified perovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere[J]. Adv Mater, 2022, 34(10): 2106379.

    [68] WANG N, TANG C M, DU L, et al. Advanced cathode materials for protonic ceramic fuel cells: Recent progress and future perspectives[J]. Adv Energy Mater, 2022, 12(34): 2201882.

    [69] LIU Z Q, CHEN Y, YANG G M, et al. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells[J]. Appl Catal B Environ, 2022, 319: 121929.

    [70] KIM J H, JANG K, LIM D K, et al. Self-assembled nano-composite perovskites as highly efficient and robust hybrid cathodes for solid oxide fuel cells[J]. J Mater Chem A, 2022, 10(5): 2496-2508.

    [71] HE F, LIU S, WU T, et al. Catalytic self-assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2022, 32(48): 2206756.

    [72] SONG Y F, CHEN Y B, WANG W, et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode[J]. Joule, 2019, 3(11): 2842-2853.

    [73] KIM J, SENGODAN S, KWON G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells[J]. Chem Sus Chem, 2014, 7(10): 2811-2815.

    [74] DUAN C C, TONG J H, SHANG M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures[J]. Science, 2015, 349(6254): 1321-1326.

    [75] DING H P, WU W, JIANG C, et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production[J]. Nat Commun, 2020, 11: 1907.

    [76] BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485.

    [77] HE F, ZHOU Y C, HU T, et al. An efficient high-entropy perovskite-type air electrode for reversible oxygen reduction and water splitting in protonic ceramic cells[J]. Adv Mater, 2023, 35(16): e2209469.

    [78] WANG N, TORIUMI H, SATO Y, et al. La0.8Sr0.2Co1-xNixO3-δ as the efficient triple conductor air electrode for protonic ceramic cells[J]. ACS Appl Energy Mater, 2021, 4(1): 554-563.

    [79] ZHOU C, SUNARSO J, SONG Y F, et al. New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode[J]. J Mater Chem A, 2019, 7(21): 13265-13274.

    [80] WANG N, YUAN B Y, TANG C M, et al. Machine-learning- accelerated development of efficient mixed protonic-electronic conducting oxides as the air electrodes for protonic ceramic cells[J]. Adv Mater, 2022, 34(51): 2203446.

    [81] HU T, HE F, LIU M L, et al. In situ/operando regulation of the reaction activities on hetero-structured electrodes for solid oxide cells[J]. Prog Mater Sci, 2023, 133: 101050.

    [82] ZHOU Y C, LIU E Z, CHEN Y, et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells[J]. ACS Energy Lett, 2021, 6(4): 1511-1520.

    [83] XU K, ZHANG H, XU Y S, et al. An efficient steam-induced heterostructured air electrode for protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2022, 32(23): 2110998.

    [84] SAQIB M, CHOI I G, BAE H, et al. Transition from perovskite to misfit-layered structure materials: A highly oxygen deficient and stable oxygen electrode catalyst[J]. Energy Environ Sci, 2021, 14(4): 2472-2484.

    [85] ZHONG P, TOYOURA K, JIANG L L, et al. Protonic conduction in La2NiO4+δ and La2-xAxNiO4+δ (A=Ca, Sr, Ba) ruddlesden-popper type oxides[J]. Adv Energy Mater, 2022, 12(22): 2200392.

    [86] ZOHOURIAN R, MERKLE R, RAIMONDI G, et al. Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: Understanding the trends in proton uptake[J]. Adv Funct Mater, 2018, 28(35): 1801241.

    [88] WANG N, HINOKUMA S, INA T, et al. Mixed proton-electron-oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells[J]. J Mater Chem A, 2020, 8(21): 11043-11055.

    [89] ZOU D, YI Y N, SONG Y F, et al. The BaCe0.16Y0.04Fe0.8O3-δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures[J]. J Mater Chem A, 2022, 10(10): 5381-5390.

    [90] REN R Z, WANG Z H, MENG X G, et al. Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells[J]. ACS Appl Energy Mater, 2020, 3(5): 4914-4922.

    [91] XIA Y P, JIN Z Z, WANG H Q, et al. A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance[J]. J Mater Chem A, 2019, 7(27): 16136-16148.

    [92] MA J Y, PAN Y X, WANG Y K, et al. A Sr and Ni doped Ruddlesden-Popper perovskite oxide La1.6Sr0.4Cu0.6Ni0.4O4+δ as a promising cathode for protonic ceramic fuel cells[J]. J Power Sources, 2021, 509: 230369.

    [94] ZHANG L M, YANG S Y, ZHANG S Z. A novel perovskite oxychloride as a high performance cathode for protonic ceramic fuel cells[J]. J Power Sources, 2019, 440: 227125.

    [95] LIU J J, JIN Z Z, MIAO L N, et al. A novel anions and cations co-doped strategy for developing high-performance cobalt-free cathode for intermediate-temperature proton-conducting solid oxide fuel cells[J]. Int J Hydrog Energy, 2019, 44(21): 11079-11087.

    [96] LIANG M Z, SONG Y F, LIU D L, et al. Magnesium tuned triple conductivity and bifunctionality of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite towards reversible protonic ceramic electrochemical cells[J]. Appl Catal B Environ, 2022, 318: 121868.

    [97] TANG C M, AKIMOTO K, WANG N, et al. The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells[J]. J Mater Chem A, 2021, 9(24): 14032-14042.

    [99] BIAN W J, WU W, GAO Y P, et al. Regulation of cathode mass and charge transfer by structural 3D engineering for protonic ceramic fuel cell at 400 ℃[J]. Adv Funct Mater, 2021, 31(33): 2170244.

    [100] ZHANG L M, YANG S Y, ZHANG S Z, et al. Cerium and Gadolinium co-doped perovskite oxide for a protonic ceramic fuel cell cathode[J]. Int J Hydrog Energy, 2019, 44(51): 27921-27929.

    [101] SHIN J S, PARK H, PARK K, et al. Activity of layered swedenborgite structured Y0.8Er0.2BaCo3.2Ga0.8O7+δ for oxygen electrode reactions in at intermediate temperature reversible ceramic cells[J]. J Mater Chem A, 2021, 9(1): 607-621.

    [102] ZHU Z Y, ZHOU M Y, TAN K, et al. High performance and stability enabled by tuning the component thermal expansion coefficients of a proton-conducting solid oxide cell operating at high steam concentration[J]. ACS Appl Mater Interfaces, 2023, 15(11): 14457-14469.

    YIN Chaofan, LIU Zhengrong, SUN Yueyue, ZHOU Yucun, LUO Ting, WU Kai, ZHOU Jun. Research Progress on Proton-Conducting Reversible Solid Oxide Cells Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2700
    Download Citation