• Chinese Journal of Lasers
  • Vol. 42, Issue 7, 703004 (2015)
Wang Haisheng1、2、*, Wang Wei1、2, Wang Xiaonan2, Zhu Guangjiang1, Chen Changjun3, Zhang Min3, and Zhu Guohui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201542.0703004 Cite this Article Set citation alerts
    Wang Haisheng, Wang Wei, Wang Xiaonan, Zhu Guangjiang, Chen Changjun, Zhang Min, Zhu Guohui. Effect of Heat Input on Weld Joints Microstructure and Nano Mechanical Properties of Nano Precipitation Hardening Steel[J]. Chinese Journal of Lasers, 2015, 42(7): 703004 Copy Citation Text show less
    References

    [1] Peng Yun, Peng Xingna, Zhang Xiaomu, et al.. Microstructure and mechanical properties of GMAW weld metal of 890MPa class steel[J]. Journal of Iron and Steel Research, 2014, 21(5): 539-544.

    [2] L karlsson, H K D H Bhadesshia. The latest trend of welding materials in Europe[J]. Journal of the Japan Welding Society, 2011, 80(1): 110-119.

    [3] Kang Yonglin, Han Qihang, Zhao Ximeng, et al.. Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium[J]. Materials and Design, 2013, 44: 331-339.

    [4] R D K Misra, H Nathani, J E Hartmann, et al.. Microstructural evolution in a new 770 MPa hot rolled Nb–Ti microalloyed steel[J]. Materials Science and Engineering A, 2005, 394(1-2): 339–352.

    [5] Wang Xiaonan, Du Linxiu, Xie Hui, et al.. Effect of deformation on continuous cooling phase transformation behavior of 780 MPa Nb-Ti ultra-high strength steel[J]. Steel Research International, 2011, 82(12): 1417-1424.

    [6] Mikhail Sokolov, Antti Salminen, Mikhail Kuznetsov. Laser welding and weld hardness analysis of thick section S355 structural steel[J]. Materials and Design, 2011, 32(10): 5127-5131.

    [7] Zhao Lin, Chen Wuzhu, Zhang Xudong. Microstructure and mehanical properties of laser welded heat affected zone in new ultra low carbon bainitic steel[J]. Chinese J Lasers, 2006, 33(3): 408-412.

    [8] G Y Perez-Medina, H F Lopez, P Zambrano, et al.. Microstructural effects on the mechanical integrity of a TRIP-800 steel welded by laser-CO2 process[J]. Journal of Materials Engineering and Performance, 2013, 22(2): 602-612.

    [9] Li Yaling, Huang Jian, Gao Zhiguo, et al.. Structure and properties of high power laser welding of high strength steel B450 LAD for vehicles[J]. Chinese J Lasers, 2008, 35(12): 2047-2051.

    [10] Wang Xiaonan, Chen Changjun, Zhu Guangjiang, et al.. Research progress on laser- arc hybrid welding of steel[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030008.

    [11] Sun Qian, Wang Xiaonan, Zhang Shunhu, et al.. Effect of microstructure on fracture toughness of new type hot-rolled nano-scale precipitation strengthening steel[J]. Acta Metallurgica Sinica, 2013, 49(12): 1501-1507.

    [12] H N Moosavy, M R Aboutalebi, S H Seyedein. An analytical algorithm to predict weldability of precipitation-strengthened nickelbase superalloys[J]. Journal of Materials Research and Technology, 2012, 212(11): 2210-2218.

    [13] W C Oliver, G M Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.

    [14] Zhu Lihong. Study on Effect of Laser Welding Heat Input on Microstructures and Properties of Stainless Steel Joints[D]. Changchun: Jilin University, 2014.

    [15] Zuo Zhuchuan. Laser Processing of High Strength Aluminum Alloy[M]. Beijing: National Defence Industry Press, 2002: 25-29.

    [16] Liu Huijie. Welding Metallurgy and Welding[M]. Haerbin: Machinery Industry Press, 2007: 85-126.

    [17] Wang Wenquan, Ma Kai, Sun Daqian, et al.. Microstructure and properties of CO2 laser welded 600 MPa DP steel[J]. Transactions of the China Welding Institution, 2010, 31(9): 25-28.

    [18] Liu Qibin, Bai Lifeng. Microstructure and properties of ultra- high strength steel 30CrMnSiNi2A by laser welding[J]. Chinese J Lasers, 2009, 36(8): 2182-2186.

    [19] Niu Jitai. Physical Simulation in Materials and Hot-Working[M]. Beijing: National Defence Industry Press, 1999: 77-83.

    [20] Adam Grajcar, Maciej Rozanski, Sebastian Stano. Effect of heat input on microstructure and hardness distribution of laser welded Si-Al TRIP-type steel[J]. Advances in Materials Science and Engineering, 2014: 974182.

    [21] Ren Mingxing, Li Bangsheng, Yang Chuang, et al.. Hardness and elastic modulus of microcastings by nanoindentation[J]. The Chinese Journal of Nonferrous Metals, 2008 ,18(2): 231-236.

    [22] Wang Junsheng. Infiuence of alloying elements on the elastic modulus[J]. Chinese J Rare Metals, 1979, (4): 1-11.

    [23] Lan Liangyun, Qiu Chunlin, Zhao Dewen, et al.. Structure and micromechanical properties of a weld joint using steel with low sensitivity to weld cracking[J]. Journal of Northeastern University (Natural Science), 2011, 32(4): 505-508.

    CLP Journals

    [1] Wang Haisheng, Wang Xiaonan, Zhang Min, Wang Wei, Zhu Guohui, Chen Changjun. Effect of Heat Input on Microstructure and Properties of Microalloyed C-Mn Steel Full Penetration Welded Joint Using Laser Welding[J]. Chinese Journal of Lasers, 2016, 43(1): 103003

    Wang Haisheng, Wang Wei, Wang Xiaonan, Zhu Guangjiang, Chen Changjun, Zhang Min, Zhu Guohui. Effect of Heat Input on Weld Joints Microstructure and Nano Mechanical Properties of Nano Precipitation Hardening Steel[J]. Chinese Journal of Lasers, 2015, 42(7): 703004
    Download Citation