• Matter and Radiation at Extremes
  • Vol. 9, Issue 1, 016601 (2024)
S. Yu Gus’kov and R. A. Yakhina)
Author Affiliations
  • P.N. Lebedev Physical Institute of Russian Academy of Sciences, Leninskii Prospect 53, Moscow 119991, Russia
  • show less
    DOI: 10.1063/5.0157904 Cite this Article
    S. Yu Gus’kov, R. A. Yakhin. Nonstationary laser-supported ionization wave in layer of porous substance with subcritical density[J]. Matter and Radiation at Extremes, 2024, 9(1): 016601 Copy Citation Text show less
    References

    [1] V. B.Rozanov, S. Yu.Gus’kov. Interaction of laser radiation with a porous medium and formation of a nonequilibrium plasma. Quantum Electron., 27, 696(1997).

    [2] S. Yu.Gus’kov. Nonequilibrium laser-produced plasma of volume-structured media and inertial-confined-fusion applications. J. Russ. Laser Res., 31, 574(2010).

    [3] V. V.Gavrilov, N. G.Koval’skii, I. N.Burdonskii, V. M.Petryakov, V. B.Rozanov, E. V.Zhuzhukalo, A. Y.Gol’tsov, A. E.Bugrov, M. I.Pergament, S. Yu.Gus’kov. Interaction of a high-power laser beam with low-density porous media. J. Exp. Theor. Phys., 84, 497(1997).

    [4] C.Strangio, A.Caruso, V. B.Rozanov, S. Yu.Gus’kov. Interaction experiments of laser light with low density supercritical foams at the AEEF ABC facility. Laser Part. Beams, 18, 25(2000).

    [5] O.Willi, M.Dunne, M.Desselberger, J.Edwards, M.Jones. Use of X-ray preheated foam layers to reduce beam structure imprint in laser-driven targets. Phys. Rev. Lett., 74, 2961(1995).

    [6] N. G.Borisenko, D. T.Michel, C.Labaune, J.Limpouch, S.Weber, P.Romary, D.Pesme, C.Riconda, G.Soullie, R.Wrobel, S.Depierreux, E.Alozy, B.Villette, S.Huller, P.Di-Nicola, P.Loiseau, C.Reverdin, C.Stenz, P.Nicolai, M.Casanova, W.Nazarov, V. T.Tikhonchuk, C.Meyer, G.Thiell, G.Riazuelo, M.Grech. Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime. Phys. Rev. Lett., 102, 195005(2009).

    [7] W.Nazarov, M.Koenig, D.Batani, A.Benuzzi, T.Hall. Recent advances in laser–plasma experiments using foams. Laser Part. Beams, 20, 303(2002).

    [8] A. A.Rupasov, M.Salvadori, R.De Angelis, G.Di Giorgio, G.Cristofari, P.Andreoli, M.Cipriani, F.Consoli, S. Yu.Gus’kov. Time-dependent measurement of high-power laser light reflection by low-Z foam plasma. High Power Laser Sci. Eng., 9, e40(2021).

    [9] K.Nagai, C. S. A.Musgrave, W.Nazarov. A review of low density porous materials used in laser plasma experiments. Phys. Plasmas, 25, 030501(2018).

    [10] V. B.Rozanov, N. V.Zmitrenko, S. Yu.Gus’kov. The laser greenhouse thermonuclear target with distributed absorption of laser energy. J. Exp. Theor. Phys., 81, 296(1995).

    [11] M.Borghesi, R.Watt, J.Mack, O.Willi, A.Iwase, R.Taylor, S. R.Goldman, R.Gibson, M.Dunne, M. W.Jones. Phys. Rev. Lett., 75, 3858(1995).

    [12] Y. A.Merkul’ev, S. Y.Gus’kov. Low-density absorber—Converter in direct-irradiation laser thermonuclear targets. Quantum Electron., 31, 311(2001).

    [13] A.Balducci, D.Batani, T.L?wer, W.Nazarov, B.Faral, A.Benuzzi, T.Hall, M.Temporal, M.Koenig. Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E, 63, 046410(2001).

    [14] F.Torsiello, W.Nazarov, N.Grandjouan, M.Temporal, D.Batani, M.Koenig, T.Hall, J.Krishnan, A.Benuzzi, L.Müller, B.Faral. Dynamics of laser produced shocks in foam–solid targets. Phys. Plasmas, 5, 2827(1998).

    [15] S.Atzeni, M.Temporal, D.Batani, M.Koenig. Analysis of the impedance mismatch effect in foam-solid targets compressed by laser-driven shock waves. Eur. Phys. J. D, 12, 509(2000).

    [16] S. G.Garanin, I. A.Belov, S. Y.Golovkin, S. A.Bel’kov, G. A.Vergunova, A. Yu.Voronin, S. Y.Gus’kov, N. N.Demchenko, S. V.Bondarenko, V. N.Derkachet?al.. Shock-wave pressure transfer to a solid target with porous absorber of high-power laser pulse. J. Exp. Theor. Phys., 134, 340(2022).

    [17] J.Limpouch, V.Tikhonchuk, S.Gus’kov, P.Nicolai. Laser-supported ionization wave in under-dense gases and foams. Phys. Plasmas, 18, 103114(2011).

    [18] J.Denavit, D. W.Phillion. Laser ionization and heating of gas targets for long-scale-length instability experiments. Phys. Plasmas, 1, 1971(1994).

    [19] N.Tanaka, H.Matsukuma, K.Koga, A.Yogo, K.Fournier, Z.Zhang, H.Nishimura, G.Kemp, K.Brown, J.Davis, J.Colvin. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma. Phys. Plasmas, 25, 032702(2018).

    [20] P.Andreoli, G.Cristofari, R.De Angelis, A.Rupasov, G.Di Giorgio, S. Yu.Gus’kov, M.Cipriani, F.Consoli. Laser-driven hydrothermal wave speed in low-Z foam of overcritical density. Phys. Plasmas, 25, 092704(2018).

    [21] P.Nicolai, S.Gus’kov, S.Fujioka, N.Borisenko, A.Sunahara, G.Riazuelo, M.Olazabal-Loumé, C.Labaune, V.Tikhonchuk, M.Grech, A.Orekov, J.Velechowski. Experimental evidence of foam homogenization. Phys. Plasmas, 19, 113105(2012).

    [22] Y. A.Merkuliev, N. G.Borisenko. Preheating of a target by laser radiation through plasma and polymer aerogel. J. Russ. Laser Res., 31, 256(2010).

    [23] J.Limpouch, N. G.Borisenko, V. G.Pimenov, Yu.A.Merkuliev, V. N.Kondrashov, A. M.Khalenkov. Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density. Laser Part. Beams, 24, 283-290(2006).

    [24] S. C.Wilks, R. L.Berger, B. J.Winjum, P. A.Sterne, G. E.Kemp, M. M.Biener, J. L.Milovich, D. A.Mariscal, S. H.Langer, M.Stadermann, J.Biener, M. A.Belyaev, O. S.Jones, J. S.Oakdale. Experimental and calculational investigation of laser-heated additive manufactured foams. Phys. Plasmas, 28, 022709(2021).

    [25] R.Liska, G.Ren, F. P.Condamine, V.Tikhonchuk, D.Yang, X. S.Peng, S. E.Jiang, W. Y.Huo, N.Jourdain, M.Kr?s, W.Nazarov, X. M.Liu, T. M.Song, Y. G.Liu, B. H.Zhang, J.Li, W.Zheng, J. M.Yang, F.Wang, S.Weber, Z. C.Li, Y. H.Chen, S. W.Li, K. Q.Pan, Y. L.Li, J.Limpouch, O.Renner, Z. Y.Guan, L.Hudec, T.Gong, T.Xu. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype. Matter Radiat. Extremes, 6, 025902(2021).

    [26] V.Tikhonchuk, R.Liska, J.Limpouch, J.Velechovsky. Hydrodynamic modeling of laser interaction with micro-structured targets. Plasma Phys. Control. Fusion, 58, 095004(2016).

    [27] A.Rupasov, M.Cipriani, G.Di Giorgio, F.Consoli, P.Andreoli, S.Gus’kov, F.Ingenito, R.De Angelis, G.Cristofari. Laser-supported hydrothermal wave in low-dense porous substance. Laser Part. Beams, 36, 121-128(2018).

    [28] S.Langer, D.Mariscal, O.Jones, R.Berger, M.Belyaev. Laser propagation in a subcritical foam: Ion and electron heating. Phys. Plasmas, 25, 123109(2018).

    [29] V.Tikhonchuk, Y. J.Gu, S.Weber, O.Klimo, J.Limpouch. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes. Matter Radiat. Extremes, 4, 045402(2019).

    [30] S. H.Langer, M. A.Belyaev, B.Winjum, R. L.Berger, O. S.Jones, D. A.Mariscal, J.Milovich. Laser propagation in a subcritical foam: Subgrid model. Phys. Plasmas, 27, 112710(2020).

    [31] S.Shekhanov, A.Gintrand, J.Limpouch, S.Weber, L.Hudec, R.Liska, V. T.Tikhonchuk. Hybrid ablation–expansion model for laser interaction with low-density foams. Phys. Plasmas, 30, 042704(2023).

    [32] R. A.Yakhin, S. Yu.Gus’kov, P. A.Kuchugov. Duration and distance of a laser-driven shock wave formation in a plasma with subcritical density. Phys. Plasmas, 28, 092108(2021).

    [33] V. V.Gavrilov, A. Yu.Gol’tsov, I. Yu.Skobelev, T. A.Pikuz, A. Ya.Faenov, S. N.Koptyaev, N. G.Koval'skii, A. I.Magunov. X-ray spectral measurement of high-temperature plasma parameters in porous targets irradiated with high-power laser pulses. Quantum Electron., 31, 1071(2001).

    [34] I. V.Popov, A. P.Favorskii, V. F.Tishkin, V. V.Nikishin. Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability. Mat. Model., 7, 15(1995).

    [35] S. Yu.Gus’kov, S. A.Bel’kov, I. Y.Doskoch, P. A.Kuchugov, S. V.Bondarenko, N. V.Zmitrenko, R. A.Yakhin, G. A.Vergunova, R. V.Stepanov, V. B.Rozanov, N. N.Demchenko, S. G.Garanin. Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse. J. Exp. Theor. Phys., 124, 341(2017).

    [36] F.Consoli, M.Cipriani, G.Cristofari, G.Di Giorgio, P.Andreoli, A. A.Rupasov, R.De Angelis, S. Y.Gus’kov. Absorption coefficient for nanosecond laser pulse in porous material. Plasma Phys. Controlled Fusion, 57, 125004(2015).

    S. Yu Gus’kov, R. A. Yakhin. Nonstationary laser-supported ionization wave in layer of porous substance with subcritical density[J]. Matter and Radiation at Extremes, 2024, 9(1): 016601
    Download Citation