• Optics and Precision Engineering
  • Vol. 32, Issue 6, 843 (2024)
Ying ZHOU1,2,*, Shenghu PEI1, Haiyong CHEN1,2, and Shibo XU1
Author Affiliations
  • 1School of Artificial Intelligence, Hebei University of Technology, Tianjin30030, China
  • 2China Hebei Control Engineering Research Center, Tianjin300130, China
  • show less
    DOI: 10.37188/OPE.20243206.0843 Cite this Article
    Ying ZHOU, Shenghu PEI, Haiyong CHEN, Shibo XU. Image super-resolution network based on multi-scale adaptive attention[J]. Optics and Precision Engineering, 2024, 32(6): 843 Copy Citation Text show less
    References

    [1] M HIJJI, A KHAN, M M ALWAKEEL et al. Intelligent image super-resolution for vehicle license plate in surveillance applications. Mathematics, 11, 892(2023).

    [2] S L CHEN, Y OGAWA, C B ZHAO et al. Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 129-152(2023).

    [3] Q WU, Y W LI, Y W SUN et al. An arbitrary scale super-resolution approach for 3D MR images via implicit neural representation. IEEE Journal of Biomedical and Health Informatics, 27, 1004-1015(2023).

    [4] C DONG, C C LOY, K M HE et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [5] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(2016).

    [6] J KIM, J K LEE, K M LEE. Accurate image super-resolution using very deep convolutional networks, 1646-1654(2016).

    [7] Y TAI, J YANG, X M LIU. Image super-resolution via deep recursive residual network, 21, 2790-2798(2017).

    [8] H KIM et al. Enhanced deep residual networks for single image super-resolution, 21, 1132-1140(2017).

    [9] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500.(in Chinese). doi: 10.37188/OPE.20223020.2489

    [10] Q CAI, J X LI, H F LI et al. TDPN: texture and detail-preserving network for single image super-resolution. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 31, 2375-2389(2022).

    [11] F Q LIU, X M YANG, B DE BAETS. A deep recursive multi-scale feature fusion network for image super-resolution. Journal of Visual Communication and Image Representation, 90, 103730(2023).

    [12] 许娇, 袁三男. 增强型多尺度残差网络的图像超分辨率重建算法[J]. 激光与光电子学进展, 2023, 60(4): 3788/LOP212884. doi: 10.3788/LOP212884XUJ, YUANS N. Image super-resolution reconstruction algorithm based on enhanced multi-scale residual network[J]. Laser & Optoelectronics Progress, 2023, 60(4): 3788/LOP212884.(in Chinese). doi: 10.3788/LOP212884

    [13] B NIU, W L WEN, W Q REN et al. Single Image Super-Resolution via a Holistic Attention Network, 191-207(2020).

    [14] 王杰, 徐国明, 马健, 等. 轻量级注意力级联网络的偏振计算成像超分辨率重建[J]. 光学 精密工程, 2022, 30(19): 2404-2419. doi: 10.37188/OPE.20223019.2404WANGJ, XUG M, MAJ, et al. Polarization computational imaging super-resolution reconstruction with lightweight attention cascading network[J]. Opt. Precision Eng., 2022, 30(19): 2404-2419.(in Chinese). doi: 10.37188/OPE.20223019.2404

    [15] J N SU, M GAN, G Y CHEN et al. Global learnable attention for single image super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-12(2023).

    [16] P BEHJATI, P RODRIGUEZ, C FERN\'ANDEZ et al. Single image super-resolution based on directional variance attention network. Pattern Recognition, 133, 108997(2023).

    [17] E AGUSTSSON, R TIMOFTE. NTIRE 2017 challenge on single image super-resolution: dataset and study, 21, 1122-1131(2017).

    [18] M BEVILACQUA, A ROUMY, C GUILLEMOT et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding, 135(2012).

    [19] R ZEYDE, M ELAD, M PROTTER. On single image scale-up using sparse-representations, 711-730(2012).

    [20] P ARBELÁEZ, M MAIRE, C FOWLKES et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 898-916(2011).

    [21] J B HUANG, A SINGH, N AHUJA. Single image super-resolution from transformed self-exemplars, 7, 5197-5206(2015).

    [22] Y J WANG, J H LI, Y LU et al. Image quality evaluation based on image weighted separating block peak signal to noise ratio. Nanjing. IEEE, 994-997(2003).

    [23] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [24] DP KINGMA, J L BA. Adam: a method for stochastic optimization. arXiv preprint(2014).

    [25] Q L WANG, B G WU, P F ZHU et al. ECA-Net: efficient channel attention for deep convolutional neural networks, 13, 11531-11539(2020).

    [26] S H WOO, J PARK, J Y LEE et al. CBAM: convolutional block attention module, 3-19(2018).

    [27] F Y WANG, H T HU, C SHEN. BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution. arXiv, 2104-07566(2021). http://arxiv.org/abs/2104.07566

    [28] X H WANG, Q WANG, Y Z ZHAO et al. Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning, 268-285(2021).

    [29] Y L ZHANG, Y P TIAN, Y KONG et al. Residual dense network for image super-resolution, 18, 2472-2481(2018).

    [30] C LIU, P C LEI. An efficient group skip-connecting network for image super-resolution. Knowledge-Based Systems, 222, 107017(2021).

    [31] S ANWAR, N BARNES. Densely residual Laplacian super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1192-1204(2022).

    [32] J Y LIANG, J Z CAO, G L SUN et al. Swinir: image restoration using swin transformer, 11, 1833-1844(2021).

    [33] Y F ZUO, J C XIE, H WANG et al. Gradient-guided single image super-resolution based on joint trilateral feature filtering. IEEE Transactions on Circuits and Systems for Video Technology, 33, 505-520(2023).

    CLP Journals

    [1] Yulan HAN, Yihong LUO, Yujie CUI, Chaofeng LAN. Super-resolution reconstruction of text image with multimodal semantic interaction[J]. Optics and Precision Engineering, 2025, 33(1): 135

    [2] Yichuan YANG, Zhongqi MA, Xinyao ZHOU, Fujian ZHENG, Hong HUANG. Spatial adaptation and frequency fusion network for single remote sensing image super-resolution[J]. Optics and Precision Engineering, 2025, 33(8): 1238

    [3] Yulan HAN, Yihong LUO, Yujie CUI, Chaofeng LAN. Super-resolution reconstruction of text image with multimodal semantic interaction[J]. Optics and Precision Engineering, 2025, 33(1): 135

    [4] Yichuan YANG, Zhongqi MA, Xinyao ZHOU, Fujian ZHENG, Hong HUANG. Spatial adaptation and frequency fusion network for single remote sensing image super-resolution[J]. Optics and Precision Engineering, 2025, 33(8): 1238

    Ying ZHOU, Shenghu PEI, Haiyong CHEN, Shibo XU. Image super-resolution network based on multi-scale adaptive attention[J]. Optics and Precision Engineering, 2024, 32(6): 843
    Download Citation