[1] M HIJJI, A KHAN, M M ALWAKEEL et al. Intelligent image super-resolution for vehicle license plate in surveillance applications. Mathematics, 11, 892(2023).
[2] S L CHEN, Y OGAWA, C B ZHAO et al. Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 129-152(2023).
[3] Q WU, Y W LI, Y W SUN et al. An arbitrary scale super-resolution approach for 3D MR images via implicit neural representation. IEEE Journal of Biomedical and Health Informatics, 27, 1004-1015(2023).
[4] C DONG, C C LOY, K M HE et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[5] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(2016).
[6] J KIM, J K LEE, K M LEE. Accurate image super-resolution using very deep convolutional networks, 1646-1654(2016).
[7] Y TAI, J YANG, X M LIU. Image super-resolution via deep recursive residual network, 21, 2790-2798(2017).
[8] H KIM et al. Enhanced deep residual networks for single image super-resolution, 21, 1132-1140(2017).
[9] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500.(in Chinese). doi: 10.37188/OPE.20223020.2489
[10] Q CAI, J X LI, H F LI et al. TDPN: texture and detail-preserving network for single image super-resolution. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 31, 2375-2389(2022).
[11] F Q LIU, X M YANG, B DE BAETS. A deep recursive multi-scale feature fusion network for image super-resolution. Journal of Visual Communication and Image Representation, 90, 103730(2023).
[12] 许娇, 袁三男. 增强型多尺度残差网络的图像超分辨率重建算法[J]. 激光与光电子学进展, 2023, 60(4): 3788/LOP212884. doi: 10.3788/LOP212884XUJ, YUANS N. Image super-resolution reconstruction algorithm based on enhanced multi-scale residual network[J]. Laser & Optoelectronics Progress, 2023, 60(4): 3788/LOP212884.(in Chinese). doi: 10.3788/LOP212884
[13] B NIU, W L WEN, W Q REN et al. Single Image Super-Resolution via a Holistic Attention Network, 191-207(2020).
[14] 王杰, 徐国明, 马健, 等. 轻量级注意力级联网络的偏振计算成像超分辨率重建[J]. 光学 精密工程, 2022, 30(19): 2404-2419. doi: 10.37188/OPE.20223019.2404WANGJ, XUG M, MAJ, et al. Polarization computational imaging super-resolution reconstruction with lightweight attention cascading network[J]. Opt. Precision Eng., 2022, 30(19): 2404-2419.(in Chinese). doi: 10.37188/OPE.20223019.2404
[15] J N SU, M GAN, G Y CHEN et al. Global learnable attention for single image super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-12(2023).
[16] P BEHJATI, P RODRIGUEZ, C FERN\'ANDEZ et al. Single image super-resolution based on directional variance attention network. Pattern Recognition, 133, 108997(2023).
[17] E AGUSTSSON, R TIMOFTE. NTIRE 2017 challenge on single image super-resolution: dataset and study, 21, 1122-1131(2017).
[18] M BEVILACQUA, A ROUMY, C GUILLEMOT et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding, 135(2012).
[19] R ZEYDE, M ELAD, M PROTTER. On single image scale-up using sparse-representations, 711-730(2012).
[20] P ARBELÁEZ, M MAIRE, C FOWLKES et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 898-916(2011).
[21] J B HUANG, A SINGH, N AHUJA. Single image super-resolution from transformed self-exemplars, 7, 5197-5206(2015).
[22] Y J WANG, J H LI, Y LU et al. Image quality evaluation based on image weighted separating block peak signal to noise ratio. Nanjing. IEEE, 994-997(2003).
[23] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).
[24] DP KINGMA, J L BA. Adam: a method for stochastic optimization. arXiv preprint(2014).
[25] Q L WANG, B G WU, P F ZHU et al. ECA-Net: efficient channel attention for deep convolutional neural networks, 13, 11531-11539(2020).
[26] S H WOO, J PARK, J Y LEE et al. CBAM: convolutional block attention module, 3-19(2018).
[28] X H WANG, Q WANG, Y Z ZHAO et al. Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning, 268-285(2021).
[29] Y L ZHANG, Y P TIAN, Y KONG et al. Residual dense network for image super-resolution, 18, 2472-2481(2018).
[30] C LIU, P C LEI. An efficient group skip-connecting network for image super-resolution. Knowledge-Based Systems, 222, 107017(2021).
[31] S ANWAR, N BARNES. Densely residual Laplacian super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1192-1204(2022).
[32] J Y LIANG, J Z CAO, G L SUN et al. Swinir: image restoration using swin transformer, 11, 1833-1844(2021).
[33] Y F ZUO, J C XIE, H WANG et al. Gradient-guided single image super-resolution based on joint trilateral feature filtering. IEEE Transactions on Circuits and Systems for Video Technology, 33, 505-520(2023).