• Chinese Optics Letters
  • Vol. 22, Issue 12, 123601 (2024)
Haoyu Wang1, Zhancheng Li1,*, Wenwei Liu1, Yuebian Zhang1..., Hua Cheng1,** and Shuqi Chen1,2,3,***|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
  • 2School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.3788/COL202422.123601 Cite this Article Set citation alerts
    Haoyu Wang, Zhancheng Li, Wenwei Liu, Yuebian Zhang, Hua Cheng, Shuqi Chen, "Electrically controlled light focusing by a tunable metasurface using thin film lithium niobate," Chin. Opt. Lett. 22, 123601 (2024) Copy Citation Text show less
    References

    [1] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [2] W. T. Chen, A. Y. Zhu, V. Sanjeev et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220(2018).

    [3] M. Pan, Y. Fu, M. Zheng et al. “Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci. Appl., 11, 195(2022).

    [4] S. Wang, P. C. Wu, V.-C. Su et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227(2018).

    [5] R. Ahmed, H. Butt. Strain-multiplex metalens array for tunable focusing and imaging. Adv. Sci., 8, 2003394(2021).

    [6] X. Che, Y. Yu, Z. Gao et al. A broadband achromatic Alvarez metalens. Opt. Laser Technol., 159, 108985(2023).

    [7] Q. Xu, X. Su, X. Zhang et al. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves. Adv. Photonics, 4, 016002(2022).

    [8] C. A. Dirdal, P. C. Thrane, F. T. Dullo et al. MEMS-tunable dielectric metasurface lens using thin-film PZT for large displacements at low voltages. Opt. Lett., 47, 1049(2022).

    [9] Y. Li, J. Xie, L. Deng et al. Active metasurfaces based on phase transition material vanadium dioxide. Sci. China Mater., 66, 284(2023).

    [10] S. Zhu, Q. Jiang, Y. Wang et al. Nonmechanical varifocal metalens using nematic liquid crystal. Nanophotonics, 12, 1169(2023).

    [11] S. Wei, G. Cao, H. Lin et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769(2021).

    [12] M. Jazbinšek, M. Zgonik. Material tensor parameters of LiNbO3 relevant for electro-and elasto-optics. Appl. Phys. B, 74, 407(2002).

    [13] D. Zhu, L. Shao, M. Yu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [14] C. Wang, M. Zhang, X. Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [15] C. Wang, M. Zhang, B. Stern et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547(2018).

    [16] P. Tang, D. Towner, T. Hamano et al. Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Opt. Express, 12, 5962(2004).

    [17] Q. Xu, B. Schmidt, S. Pradhan et al. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325(2005).

    [18] F. Ni, H. Li, H. Liu et al. High-speed optical pulse shaping based on programmable lithium niobate spatial light modulators. Opt. Lett., 48, 884(2023).

    [19] X. Sun, Y. Wu, C. Lu et al. Thin-film lithium niobate polarization modulator without polarization diversity. Opt. Express, 30, 30592(2022).

    [20] A. Hoblos, M. Suarez, N. Courjal et al. Excitation of symmetry protected modes in a lithium niobate membrane photonic crystal for sensing applications. OSA Contin., 3, 3008(2020).

    [21] M. Roussey, M.-P. Bernal, N. Courjal et al. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett., 89, 241110(2006).

    [22] M. Roussey, M.-P. Bernal, N. Courjal et al. Experimental and theoretical characterization of a lithium niobate photonic crystal. Appl. Phys. Lett., 87, 241101(2005).

    [23] M. Roussey, F. I. Baida, M.-P. Bernal. Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal. J. Opt. Soc. Am. B, 24, 1416(2007).

    [24] M. Luennemann, U. Hartwig, G. Panotopoulos et al. Electrooptic properties of lithium niobate crystals for extremely high external electric fields. Appl. Phys. B, 76, 403(2003).

    [25] L. Yang, X. Hong, J. Li et al. Rechargeable metasurfaces for dynamic color display based on a compositional and mechanical dual-altered mechanism. Research, 2022, 9828757(2022).

    [26] X. Bai, F. Zhang, L. Sun et al. Time-modulated transmissive programmable metasurface for low sidelobe beam scanning. Research, 2022, 9825903(2022).

    [27] E. Klopfer, S. Dagli, D. Barton et al. High-quality-factor silicon-on-lithium niobate metasurfaces for electro-optically reconfigurable wavefront shaping. Nano Lett., 22, 1703(2022).

    [28] B. Gao, M. Ren, W. Wu et al. Electro-optic lithium niobate metasurfaces. Sci. China Phys. Mech. Astron., 64, 240362(2021).

    [29] A. Weiss, C. Frydendahl, J. Bar-David et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics, 9, 605(2022).

    [30] Y. Ju, H. Zhou, Y. Zhao et al. Hybrid resonance metasurface for a lithium niobate electro-optical modulator. Opt. Lett., 47, 5905(2022).

    [31] C. Damgaard-Carstensen, M. Thomaschewski, S. I. Bozhevolnyi. Electro-optic metasurface-based free-space modulators. Nanoscale, 14, 11407(2022).

    [32] C. Damgaard-Carstensen, S. I. Bozhevolnyi. Nonlocal electro-optic metasurfaces for free-space light modulation. Nanophotonics, 12, 2953(2023).

    [33] G. Liu, S. Zong, X. Liu et al. High-performance etchless lithium niobate layer electro-optic modulator enabled by quasi-BICs. Opt. Lett., 49, 113(2024).

    [34] J. Liu, L. Qu, W. Wu et al. Lithium niobate thin film electro-optic modulator. Nanophotonics, 13, 1503(2024).

    [35] C. Damgaard-Carstensen, M. Thomaschewski, F. Ding et al. Electrical tuning of Fresnel lens in reflection. ACS Photonics, 8, 1576(2021).

    [36] A. Howes, W. Wang, I. Kravchenko et al. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica, 5, 787(2018).

    [37] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B, 14, 3319(1997).

    [38] B. Yang, W. Liu, Z. Li et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett., 19, 4221(2019).

    [39] R. J. Moerland, J. P. Hoogenboom. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors. Optica, 3, 112(2016).

    [40] R. Weis, T. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191(1985).

    [41] D. Mardare, G. Rusu. Comparison of the dielectric properties for doped and undoped TiO2 thin films. J. Optoelectron. Adv. Mater., 6, 333(2004).

    [42] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [43] J. Zhong, N. An, N. Yi et al. Broadband and tunable-focus flat lens with dielectric metasurface. Plasmonics, 11, 537(2016).

    [44] S. C. Malek, A. C. Overvig, S. Shrestha et al. Active nonlocal metasurfaces. Nanophotonics, 10, 655(2020).

    [45] T. Phan, D. Sell, E. W. Wang et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 48(2019).

    [46] A. Arbabi, Y. Horie, A. J. Ball et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    Haoyu Wang, Zhancheng Li, Wenwei Liu, Yuebian Zhang, Hua Cheng, Shuqi Chen, "Electrically controlled light focusing by a tunable metasurface using thin film lithium niobate," Chin. Opt. Lett. 22, 123601 (2024)
    Download Citation