• Photonics Research
  • Vol. 7, Issue 11, 1306 (2019)
Yudi Fu, Mengfan Cheng*, Xingxing Jiang, Quan Yu, Linbojie Huang, Lei Deng, and Deming Liu
Author Affiliations
  • National Engineering Laboratory for Next Generation Internet Access System (NGIA), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.7.001306 Cite this Article Set citation alerts
    Yudi Fu, Mengfan Cheng, Xingxing Jiang, Quan Yu, Linbojie Huang, Lei Deng, Deming Liu. High-speed optical secure communication with external noise source and internal time-delayed feedback loop[J]. Photonics Research, 2019, 7(11): 1306 Copy Citation Text show less
    References

    [1] B. Akhgar, B. Wu, H. Arabnia, B. J. Shastri, P. R. Prucnal. Secure communication in fiber-optic networks. Emerging Trends in ICT Security, 173-183(2014).

    [2] E. Wohlgemuth, Y. Yoffe, T. Yeminy, Z. Zalevsky, D. Sadot. Photonic-layer encryption and steganography over IM/DD communication system. Opt. Express, 26, 32691-32703(2018).

    [3] R. Lavrov, M. Jacquot, L. Larger. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications. IEEE J. Quantum Electron., 46, 1430-1435(2010).

    [4] K. Tanizawa, F. Futami. Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF. Optical Fiber Communication Conference (OFC), Th1J.7(2019).

    [5] N. Jiang, A. Zhao, C. Xue, J. Tang, K. Qiu. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt. Lett., 44, 1536-1539(2019).

    [6] B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, P. R. Prucnal. Dispersion deployment and compensation for optical steganography based on noise. IEEE Photon. Technol. Lett., 28, 421-424(2016).

    [7] B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal. Optical steganography based on amplified spontaneous emission noise. Opt. Express, 21, 2065-2071(2013).

    [8] B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, P. R. Prucnal. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise. Opt. Express, 22, 954-961(2014).

    [9] B. Wu, Y. Huang, S. Zhang, B. J. Shastri, P. R. Prucnal. Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities. Conference on Lasers and Electro-Optics, SF1F.4(2016).

    [10] B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, P. R. Prucnal. Analog noise protected optical encryption with two-dimensional key space. Opt. Express, 22, 14568-14574(2014).

    [11] Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, D. Liu. Secure optical communication system based on ASE noise with no need for key distribution. 10th International Conference on Advanced Infocomm Technology, 47-51(2018).

    [12] S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, F. Jiang. Research on optical security based on simulated noise induced encryption scheme. J. Phys. Conf. Ser., 1176, 062059(2019).

    [13] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, K. A. Shore. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343-346(2005).

    [14] M. R. Chatterjee, A. Mohamed, F. S. Almehmadi. Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos. Appl. Opt., 57, C1-C13(2018).

    [15] F. S. Almehmadi, M. R. Chatterjee. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation. Appl. Opt., 54, 195-203(2015).

    [16] F. S. Almehmadi, M. R. Chatterjee. Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos. Opt. Eng., 53, 126102(2014).

    [17] A. Mohamed, M. R. Chatterjee. Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos. Opt. Eng., 58, 036110(2019).

    [18] J. Ke, L. Yi, G. Xia, W. Hu. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate. Opt. Lett., 43, 1323-1326(2018).

    [19] D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, A. B. Wang. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser. Opt. Express, 27, 3065-3073(2019).

    [20] T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, W. S. Hu. Maximizing the security of chaotic optical communications. Opt. Express, 24, 23439-23449(2016).

    [21] V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, W. T. Rhodes. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations. Phys. Lett. A, 308, 54-60(2003).

    [22] V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, D. S. Citrin. Time delay identification in chaotic cryptosystems ruled by delay-differential equations. J. Opt. Technol., 72, 373-377(2005).

    [23] Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, X. Bao. Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback. Opt. Laser Technol., 109, 654-658(2019).

    [24] P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, G. Q. Xia. Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback. Opt. Commun., 286, 339-343(2013).

    [25] C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, K. Qiu. Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback. Conference on Lasers and Electro-Optics, JTu5A.105(2017).

    [26] D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, A. Wang. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG. Opt. Express, 25, 10911-10924(2017).

    [27] R. M. Nguimdo, P. Colet, L. Larger, L. Pesquera. Digital key for chaos communication performing time delay concealment. Phys. Rev. Lett., 107, 034103(2011).

    [28] R. Nguimdo, P. Colet. Electro-optic phase chaos systems with an internal variable and a digital key. Opt. Express, 20, 25333-25344(2012).

    [29] C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, K. Qiu. Security-enhanced chaos communication with time-delay signature suppression and phase encryption. Opt. Lett., 41, 3690-3693(2016).

    [30] M. Cheng, L. Deng, H. Li, D. Liu. Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation. Opt. Express, 22, 5241-5251(2014).

    [31] N. Li, W. Pan, A. Locquet, D. S. Citrin. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett., 40, 4416-4419(2015).

    [32] P. Mu, W. Pan, L. Yan, B. Luo, N. Li, M. Xu. Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections. IEEE Photon. Technol. Lett., 28, 131-134(2016).

    [33] C. Cheng, Y. Chen, F. Lin. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express, 23, 2308-2319(2015).

    [34] A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, K. A. Shore. Optical heterodyne generation of high-dimensional and broadband white chaos. IEEE J. Sel. Top. Quantum Electron., 21, 531-540(2015).

    [35] J. Wu, Z. Wu, G. Xia, G. Feng. Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system. Opt. Express, 20, 1741-1753(2012).

    [36] N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, K. Qiu. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens. Opt. Express, 25, 14359-14367(2017).

    [37] M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, D. Liu. Time-delay concealment in a three-dimensional electro-optic chaos system. IEEE Photon. Technol. Lett., 27, 1030-1033(2015).

    [38] A. Zhao, N. Jiang, C. Wang, J. Zhang, K. Qiu. Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation. CLEO Pacific Rim Conference, F2D.4(2018).

    [39] D. Rontani, E. Mercier, D. Wolfersberger, M. Sciamanna. Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback. Opt. Lett., 41, 4637-4640(2016).

    [40] P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, Y. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859-17867(2019).

    [41] H. Kantz, E. Olbrich. Coarse grained dynamical entropies: investigation of high-entropic dynamical systems. Physica A, 280, 34-48(2000).

    [42] Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, D. Liu. High-speed optical secure communication system using phase modulated random noise. 10th International Conference on Advanced Infocomm Technology, 36-40(2018).

    [43] H. Chi, X. Zou, J. Yao. Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device. J. Lightwave Technol., 27, 511-521(2009).

    [44] M. Li, X. Zhang, Y. Hong, Y. Zhang, Y. Shi, X. Chen. Confidentiality-enhanced chaotic optical communication system with variable RF amplifier gain. Opt. Express, 27, 25953-25963(2019).

    [45] L. Yi, J. Ke, G. Xia, W. Hu. Phase chaos generation and security enhancement by introducing fine-controllable dispersion. J. Opt., 20, 024004(2018).

    [46] B. Romeira, F. Kong, W. Li, J. M. L. Figueiredo, J. Javaloyes, J. Yao. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter. J. Lightwave Technol., 32, 3933-3942(2014).

    [47] R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, J. Dudley. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization. Phys. Rev. E, 80, 026207(2009).

    [48] Q. Li, D. Chen, Q. Bao, R. Zeng, M. Hu. Numerical investigations of synchronization and communication based on an electro-optic phase chaos system with concealment of time delay. Appl. Opt., 58, 1715-1722(2019).

    [49] M. Cheng, L. Deng, X. Gao, H. Li, M. Tang. Security-enhanced OFDM-PON using hybrid chaotic system. IEEE Photon. Technol. Lett., 27, 326-329(2015).

    [50] C. Wang, Y. Ji, H. Wang, L. Bai. Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches. IEEE Photon. J., 10, 7203415(2018).

    [51] Q. C. Zhao, H. X. Yin. Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels. Opt. Commun., 285, 693-698(2012).

    [52] N. Jiang, J. Wang, D. Liu, C. Xue, K. Qiu. Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing. J. Opt. Soc. Am. B, 33, 637-642(2016).

    Yudi Fu, Mengfan Cheng, Xingxing Jiang, Quan Yu, Linbojie Huang, Lei Deng, Deming Liu. High-speed optical secure communication with external noise source and internal time-delayed feedback loop[J]. Photonics Research, 2019, 7(11): 1306
    Download Citation