[1] D L NICKLA, J WALLMAN. The multifunctional choroid. Progress in Retinal and Eye Research, 29, 144-168(2010).
[2] D ALONSO-CANEIRO, S A READ, M J COLLINS. Automatic segmentation of choroidal thickness in optical coherence tomography. Biomedical Optics Express, 4, 2795-2812(2013).
[3] J TIAN, P MARZILIANO, M BASKARAN et al. Automatic measurements of choroidal thickness in EDI-OCT images, 5360-5363(2012).
[4] Q F YAN, Y Y GU, J Y ZHAO et al. Automatic choroid layer segmentation in OCT images via context efficient adaptive network. Applied Intelligence, 53, 5554-5566(2023).
[5] 许祥丛, 陈俊彦, 王雪花, 等. 通过SEC-UNet精准分割糖尿病视网膜病变眼底OCT图像脉络膜层[J]. 生物化学与生物物理进展, 2022, 49(12): 2450-2457.XUX C, CHENJ Y, WANGX H, et al. Accurate segmentation of choroidal layer in OCT images of diabetic retinopathy by SEC-UNet[J]. Progress in Biochemistry and Biophysics, 2022, 49(12): 2450-2457.(in Chinese)
[6] L ZHU, J M LI, R L ZHU et al. Synergistically segmenting choroidal layer and vessel using deep learning for choroid structure analysis. Physics in Medicine and Biology, 67(2022).
[7] T T KHAING, T OKAMOTO, C YE et al. ChoroidNET: a dense dilated U-net model for choroid layer and vessel segmentation in optical coherence tomography images. IEEE Access, 9, 150951-150965(2021).
[8] X C XU, X H WANG, J Y LIN et al. Automatic segmentation and measurement of choroid layer in high myopia for OCT imaging using deep learning. Journal of Digital Imaging, 35, 1153-1163(2022).
[9] W J WU, Y GONG, H Y HAO et al. Choroidal layer segmentation in OCT images by a boundary enhancement network. Frontiers in Cell and Developmental Biology, 10, 1060241(2022).
[10] X L WANG, R GIRSHICK, A GUPTA et al. Non-local neural networks, 18, 7794-7803(2018).
[11] L XU, L WANG, Y LI et al. Big Model and Small Model: remote modeling and local information extraction module for medical image segmentation. Applied Soft Computing, 136, 110128(2023).
[13] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 27, 770-778(2016).
[15] D KERMANY, K ZHANG, M GOLDBAUM. Labeled optical coherence tomography (oct) and chest x-ray images for classification. Mendeley data, 2, 651(2018).
[16] O RONNEBERGER, P FISCHER, T BROX. U-net: Convolutional networks for biomedical image segmentation. October 5, 234-241(9).
[17] S WANG, L LI, X ZHUANG. AttU-Net: attention U-Net for brain tumor segmentation, 302-311(2021).
[18] M Z ALOM, M HASAN, C YAKOPCIC et al. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv, 2018.
[19] Q ZUO, S CHEN, Z WANG. R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation. Security and Communication Networks, 2021, 1-10(2021).
[20] J CHEN, Y LU, Q YU et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:, 2021.
[21] H CAO, Y WANG, J CHEN et al. Swin-unet: Unet-likeic pure transformer for medical image segmentation, 205-218(2022).
[22] S JAEGER, S CANDEMIR, S ANTANI et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery, 4, 475(2014).