• Acta Optica Sinica (Online)
  • Vol. 1, Issue 6, 0602001 (2024)
Yu Dong, Pengfei Wang*, Shijie Jia, Zhi Zhang, and Zhuowei Cheng
Author Affiliations
  • Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelctronic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang , China
  • show less
    DOI: 10.3788/AOSOL240450 Cite this Article Set citation alerts
    Yu Dong, Pengfei Wang, Shijie Jia, Zhi Zhang, Zhuowei Cheng. Research Progress on Rare Earth Doped Fluoride Glass and Fiber Lasers in the Mid-Infrared Region (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(6): 0602001 Copy Citation Text show less
    References

    [1] Wang P F, Wang X S, Guo H T et al[M]. Mid-infrared fluoride and chalcogenide glasses and fibers(2022).

    [2] Sun X L, Skillman D R, Hoffman E D et al. Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit[J]. Optics Express, 21, 1865-1871(2013).

    [3] Waynant R W, Ilev I K, Gannot I. Mid-infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A, 359, 635-644(2001).

    [4] Pang D Q, Li Y X, Wang Q Y. Dynamics of mid-infrared femtosecond laser resonant ablation[J]. Applied Physics A, 115, 1181-1185(2014).

    [5] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [6] Ohsawa K, Shibata T, Nakamura K et al. Fluorozirconate glasses for infrared transmitting optical fibers[C](1981).

    [7] Gu X K, Li Y L, Yang C et al. Research on Er3+: ZBLAN fiber laser based on composite F-P cavity[J]. Optoelectronics Letters, 16, 176-180(2020).

    [8] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 7, 1502309(2015).

    [9] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [10] Jackson S D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Optics Letters, 29, 334-336(2004).

    [11] Qin Z P, Xie G Q, Ma J G et al. Mid-infrared Er: ZBLAN fiber laser reaching 3.68 μm wavelength[J]. Chinese Optics Letters, 15, 111402(2017).

    [12] Schneide J, Carbonnier C, Unrau U B. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength[J]. Applied Optics, 36, 8595-8600(1997).

    [13] Kanamori T, Oikawa K, Shibata S et al. BaF2-CaF2-YF3-AlF3 glass systems for infrared transmission[J]. Japanese Journal of Applied Physics, 20, L326(1981).

    [14] Poulain M. Glass formation in ionic systems[J]. Nature, 293, 279-280(1981).

    [15] Zhang J Q. Performance studies on spectra and mid-infrared fiber lasers of rare-earth doped AlF3-based glasses[D](2023).

    [16] Videau J J, Dubois B, Portier J. Indium fluoride glasses[J]. Comptes Rendus De L Academie Des Sciences Serie II, 297, 483-485(1983).

    [17] Wang S B, Zhang J Q, Xu N N et al. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser[J]. Optics Letters, 45, 1216-1219(2020).

    [18] Gu S Q, Ramachandran S, Reuter E E et al. Photoluminescence and excitation spectroscopy of Er3+ doped As2S3 glass: novel broad band excitation mechanism[J]. Journal of Applied Physics, 77, 3365-3371(1995).

    [19] Tanabe S, Hanada T, Watanabe M et al. Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier[J]. Journal of the American Ceramic Society, 78, 2917-2922(1995).

    [20] Jha A, Richards B, Jose G et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials[J]. Progress in Materials Science, 57, 1426-1491(2012).

    [21] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 3, 187-203(1994).

    [22] Lee E T Y, Taylor E R M. Optical and thermal properties of binary calcium phosphate and Barium phosphate glasses[J]. Optical Materials, 28, 200-206(2006).

    [23] Dumbaugh W H. Infrared transmitting germanate glasses[J]. Proceedings of SPIE, 297, 80-85(1982).

    [24] Amin M Z, Majewski M R, Woodward R I et al. Novel near-infrared pump wavelengths for dysprosium fiber lasers[J]. Journal of Lightwave Technology, 38, 5801-5808(2020).

    [25] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [26] Többen H. Room temperature CW fibre laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electronics Letters, 28, 1361-1362(1992).

    [27] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶‍ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).

    [28] Bernier M, Faucher D, Caron N et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 17, 16941-16946(2009).

    [29] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014).

    [30] Lemieux-Tanguay M, Fortin V, Boilard T et al. 15 W monolithic fiber laser at 3.55 µm[J]. Optics Letters, 47, 289-292(2022).

    [31] Xu C J, Zhang J Q, Liu M et al. Recent advances in luminescence and lasing research in ZBYA glass[J]. Optical Materials Express, 12, 1542-1554(2022).

    [32] Majewski M R, Amin M Z, Berthelot T et al. Directly diode-pumped mid-infrared dysprosium fiber laser[J]. Optics Letters, 44, 5549-5552(2019).

    [33] Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Optics Letters, 34, 2327-2329(2009).

    [34] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [35] Boilard T, Fortin V, Lemieux-Tanguay M et al. 1.7 W holmium-doped fluoroindate fiber laser at 3920 nm[J]. Optics Letters, 49, 2677-2680(2024).

    [36] Tsang Y H, El-Taher A E. Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at ∼1.1 µm by an Yb fiber laser[J]. Laser Physics Letters, 8, 818-822(2011).

    [37] Wang C C, Luo H Y, Yang J et al. Watt-level ~3.5 μm Er3+-doped ZrF4 fiber laser using dual-wavelength pumping at 655 and 1981 nm[J]. IEEE Photonics Technology Letters, 33, 784-787(2021).

    [38] Zhang X, Tong C Z, Cai K D et al. 2.3 W 3.5 μm fiber laser based on bidirectional pumping[J]. Chinese Journal of Lasers, 49, 1801001(2022).

    [39] Jia S J, Jia Z X, Yao C F et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing[J]. Laser Physics, 28, 015802(2018).

    [40] Xu C J, Zhang J Q, Zhao X T et al. Two-watt mid-infrared laser emission in robust fluorozirconate fibers[J]. Optics Letters, 47, 1399-1402(2022).

    [41] Shahriari M R, Iqbal T, Foy P R et al. Fabrication of AlF3-based glass fibers[J]. MRS Online Proceedings Library, 172, 163-168(1989).

    [42] Zhang J Q, Liu M, Xu N N et al. 2.86 μm lasing in Ho3+/Pr3+ codoped fluoroaluminate glass fiber (invited)[J]. Infrared and Laser Engineering, 49, 20201062(2020).

    [43] Iqbal T, Shahriari M R, Foy P et al. AlF3-based glass fibres with enhanced optical transmission[J]. Electronics Letters, 27, 110-111(1991).

    [44] Iqbal T, Shahriari M R, Foy P et al. Preliminary study of fiber drawing of AlF3-based glasses[J]. Materials Science and Engineering B, 12, 299-303(1992).

    [45] Kajikawa S, Terao T, Motokoshi S et al. Visible laser oscillation in single-mode Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C], SM3Q.4(2016).

    [46] Kajikawa S, Terao T, Yoshida M et al. Development of visible nano second pulse laser in a Pr-doped double-clad structured waterproof fluoride glass fiber using semiconductor saturable absorber mirror[C](2016).

    [47] Liu M, Zhang J Q, Xu N N et al. Room-temperature watt-level and tunable ∼3 µm lasers in Ho3+/Pr3+ co-doped AlF3-based glass fiber[J]. Optics Letters, 46, 2417-2420(2021).

    [48] Zhang J Q, Zhao H Y, Wang R C et al. 3.9 µm emission in Nd3+ sensitized Ho3+ doped fluoroaluminate glasses[J]. Journal of Alloys and Compounds, 889, 161684(2021).

    [49] Zhang J, Wang R C, Liu M et al. ZnF2-modified AlF3-based fluoride glasses with enhanced mid-infrared 3.5 µm emission[J]. Journal of the American Ceramic Society, 105, 4691-4698(2022).

    [50] Seddon A B, Cardoso A V. The devitrification behaviour of infrared transmitting AlF3-[MgF2-CaF2-SrF2-BaF2]-YF3 glasses. I: during melt cooling[J]. Physics and Chemistry of Glasses, 35, 52-58(1994).

    [51] Liu M, Xu N N, Shen Y W et al. High water-resistant and thermal stable fluoride fibers for mid-infrared laser[J]. IEEE Photonics Technology Letters, 36, 749-752(2024).

    [52] Penilla E H, Devia-Cruz L F, Duarte M A et al. Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials[J]. Light: Science & Applications, 7, 33(2018).

    [53] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [54] Zhu X S, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in OptoElectronics, 2010, 501956(2010).

    [55] Zhang Z, Cheng Z W, Wang S B et al. Fabrication of double-cladding fluoroindate glass fibers and watt-level 2.7 μm laser application[J]. Infrared Physics & Technology, 139, 105299(2024).

    [56] Kawamoto Y, Kono A. Raman spectroscopic study of AlF3-CaF2-BaF2 glasses[J]. Journal of Non-Crystalline Solids, 85, 335-345(1986).

    [57] Xu N N, Yang Z Y, Zhang J Q et al. Direct femtosecond laser inscription of Bragg gratings in Ho3+/Pr3+ co-doped AlF3-based glass fibers for a 2.86 µm laser[J]. Optics Letters, 47, 597-600(2022).

    [58] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 24, 935-937(1988).

    [59] Herak R M, Malčić S S, Manojlovič L M. The crystal structure of sodium tridecafluorodizirconate[J]. Acta Crystallographica, 18, 520-522(1965).

    [60] Poppe E, Srinivasan B, Jain R K. 980 nm diode-pumped continuous wave mid-IR (2.7 µm) fibre laser[J]. Electronics Letters, 34, 2331-2333(1998).

    [61] Newburgh G A, Dubinskii M. Power and efficiency scaling of Er∶‍ZBLAN fiber laser[J]. Laser Physics Letters, 18, 095102(2021).

    [62] Guo C Y, Dong F L, Shen P S et al. 20 W mid-infrared fiber laser operating at 2.8 μm[J]. Chinese Journal of Lasers, 48, 1416001(2021).

    [63] Zhang J X, Fu S J, Sheng Q et al. Efficient 33.8 W mid-infrared fiber laser operating at 2.8 μm[J]. Chinese Journal of Lasers, 50, 0715001(2023).

    [64] Lemieux-Tanguay M, Boilard T, Paradis P et al. 2 W monolithic fiber laser at 3.8 µm[J]. APL Photonics, 9, 071301(2024).

    [65] Zhao H Y, Li A Z, Yi Y T et al. A Tm3+-doped ZrF4-BaF2-YF3-AlF3 glass microsphere laser in the 2.0 μm wavelength region[J]. Journal of Luminescence, 212, 207-211(2019).

    [66] Zhao H Y, Jia S J, Wang X et al. Investigation of Dy3+/Tm3+ co-doped ZrF4-BaF2-YF3-AlF3 fluoride glass for efficient 2.9 μm mid-infrared laser applications[J]. Journal of Alloys and Compounds, 817, 152754(2020).

    [67] Wang R C, Zhao H Y, Zhang M et al. Enhancement mechanisms of Tm3+-codoping on 2 μm emission in Ho3+ doped fluoroindate glasses under 888 nm laser excitation[J]. Ceramics International, 46, 6973-6977(2020).

    [68] Ebendorff-Heidepriem H, Szabó I, Rasztovits Z E. Crystallization behavior and spectroscopic properties of Ho3+-doped ZBYA-fluoride glass[J]. Optical Materials, 14, 127-136(2000).

    [69] Xu C J, Zhang J Q, Liu M et al. Midinfrared laser in Ho3+-doped ZBYA glass fiber[J]. Chinese Journal of Lasers, 49, 0101016(2022).

    [70] Zhao H Y, Wang R C, Wang X et al. Intense mid-infrared emission at 3.9 µm in Ho3+-doped ZBYA glasses for potential use as a fiber laser[J]. Optics Letters, 45, 4272-4275(2020).

    [71] Ribeiro C T M, Zanatta A R, Nunes L A O et al. Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses[J]. Journal of Applied Physics, 83, 2256-2260(1998).

    [72] Gomes L, Fortin V, Bernier M et al. Excited state absorption and energy transfer in Ho3+-doped indium fluoride glass[J]. Optical Materials, 66, 519-526(2017).

    [73] Zhang P X, Hang Y, Li Z et al. Sensitization and deactivation effects of Nd3+ on the Ho3+: 3.9 μm emission in a PbF2 crystal[J]. Optics Letters, 42, 2559-2562(2017).

    [74] Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Optics Letters, 43, 1926-1929(2018).

    [75] Maze G, Poulain M, Carre J Y et al. Fluorinated glasses[J]. Journal of Fluorine Chemistry, 78, 206-207(1996).

    [76] Boutarfaia A, Poulain M A, Poulain M J et al. Fluoroindate glasses based on the InF3-BaF2-YF3 system[J]. Journal of Non-Crystalline Solids, 213, 36-39(1997).

    [77] Poulain M, Messaddeq Y. Divalent fluoride glasses[J]. Materials Science Forum, 32/33, 131-136(1991).

    [78] Videau J J, Dance J M, Portier J et al. Etude de verres à base de InF3[J]. Revue De Chimie Minérale, 23, 789-795(1986).

    [79] Dong D K, Bo Z L, Zhu J Q et al. Study of properties of InF3-based glasses containing different valent fluorides[J]. Journal of Non-Crystalline Solids, 204, 260-264(1996).

    [80] Mastelaro V, Ribeiro S, Messaddeo Y et al. EXAFS and Raman spectroscopy study of binary indium fluoride glasses[J]. Journal of Materials Science, 31, 3441-3446(1996).

    [81] Wang R C, Zhang Z, Xu C J et al. Recent research advances of mid-infrared fluoroindate glass and fiber lasers(invited)[J]. Infrared and Laser Engineering, 52, 20230149(2023).

    [82] Wang R C, Zhang J Q, Zhao H Y et al. 3.9 μm emission and energy transfer in ultra-low OH-, Ho3+/Nd3+ co-doped fluoroindate glasses[J]. Journal of Luminescence, 225, 117363(2020).

    [83] Zhang Z, Wang R C, Liu M et al. Enhanced 3.9 µm emission from diode pumped Ho3+/Eu3+ codoped fluoroindate glasses[J]. Optics Letters, 46, 2031-2034(2021).

    [84] Wang R C, Zhang Z, Cheng Z W et al. Watt-level fluoroindate based glass fibre laser operating around 3 μm[J]. Journal of Luminescence, 256, 119626(2023).

    [85] Zhang Z, Cheng Z W, Wang R C et al. Deactivation effects of Tb3+ on Ho3+ emission in fluoroindate glasses for 3.9 μm laser applications[J]. Ceramics International, 49, 12772-12778(2023).

    [86] Bei J F, Foo H T C, Qian G J et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 4, 1213-1226(2014).

    [87] Cheng Z W, Zhang Z, Wang R C et al. Numerical modeling of dual-wavelength pumped heavily-Ho3+-doped fluoroindate fiber lasers with efficient output at 3.92 μm[J]. Journal of Lightwave Technology, 41, 7021-7028(2023).

    [88] Zhou F, Li J F, Luo H Y et al. Numerical analysis of 3.92 μm dual-wavelength pumped heavily-holmium-doped fluoroindate fiber lasers[J]. Journal of Lightwave Technology, 39, 633-645(2021).

    [89] Cierullies S, Renner H, Brinkmeyer E. Numerical optimization of multi-wavelength and cascaded Raman fiber lasers[J]. Optics Communications, 217, 233-238(2003).

    Yu Dong, Pengfei Wang, Shijie Jia, Zhi Zhang, Zhuowei Cheng. Research Progress on Rare Earth Doped Fluoride Glass and Fiber Lasers in the Mid-Infrared Region (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(6): 0602001
    Download Citation