[1] Wang P F, Wang X S, Guo H T et al[M]. Mid-infrared fluoride and chalcogenide glasses and fibers(2022).
[2] Sun X L, Skillman D R, Hoffman E D et al. Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit[J]. Optics Express, 21, 1865-1871(2013).
[3] Waynant R W, Ilev I K, Gannot I. Mid-infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A, 359, 635-644(2001).
[4] Pang D Q, Li Y X, Wang Q Y. Dynamics of mid-infrared femtosecond laser resonant ablation[J]. Applied Physics A, 115, 1181-1185(2014).
[5] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).
[6] Ohsawa K, Shibata T, Nakamura K et al. Fluorozirconate glasses for infrared transmitting optical fibers[C](1981).
[7] Gu X K, Li Y L, Yang C et al. Research on Er3+: ZBLAN fiber laser based on composite F-P cavity[J]. Optoelectronics Letters, 16, 176-180(2020).
[8] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 7, 1502309(2015).
[9] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).
[10] Jackson S D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Optics Letters, 29, 334-336(2004).
[11] Qin Z P, Xie G Q, Ma J G et al. Mid-infrared Er: ZBLAN fiber laser reaching 3.68 μm wavelength[J]. Chinese Optics Letters, 15, 111402(2017).
[12] Schneide J, Carbonnier C, Unrau U B. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength[J]. Applied Optics, 36, 8595-8600(1997).
[13] Kanamori T, Oikawa K, Shibata S et al. BaF2-CaF2-YF3-AlF3 glass systems for infrared transmission[J]. Japanese Journal of Applied Physics, 20, L326(1981).
[14] Poulain M. Glass formation in ionic systems[J]. Nature, 293, 279-280(1981).
[15] Zhang J Q. Performance studies on spectra and mid-infrared fiber lasers of rare-earth doped AlF3-based glasses[D](2023).
[16] Videau J J, Dubois B, Portier J. Indium fluoride glasses[J]. Comptes Rendus De L Academie Des Sciences Serie II, 297, 483-485(1983).
[17] Wang S B, Zhang J Q, Xu N N et al. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser[J]. Optics Letters, 45, 1216-1219(2020).
[18] Gu S Q, Ramachandran S, Reuter E E et al. Photoluminescence and excitation spectroscopy of Er3+ doped As2S3 glass: novel broad band excitation mechanism[J]. Journal of Applied Physics, 77, 3365-3371(1995).
[19] Tanabe S, Hanada T, Watanabe M et al. Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier[J]. Journal of the American Ceramic Society, 78, 2917-2922(1995).
[20] Jha A, Richards B, Jose G et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials[J]. Progress in Materials Science, 57, 1426-1491(2012).
[21] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 3, 187-203(1994).
[22] Lee E T Y, Taylor E R M. Optical and thermal properties of binary calcium phosphate and Barium phosphate glasses[J]. Optical Materials, 28, 200-206(2006).
[23] Dumbaugh W H. Infrared transmitting germanate glasses[J]. Proceedings of SPIE, 297, 80-85(1982).
[24] Amin M Z, Majewski M R, Woodward R I et al. Novel near-infrared pump wavelengths for dysprosium fiber lasers[J]. Journal of Lightwave Technology, 38, 5801-5808(2020).
[25] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).
[26] Többen H. Room temperature CW fibre laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electronics Letters, 28, 1361-1362(1992).
[27] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).
[28] Bernier M, Faucher D, Caron N et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 17, 16941-16946(2009).
[29] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014).
[30] Lemieux-Tanguay M, Fortin V, Boilard T et al. 15 W monolithic fiber laser at 3.55 µm[J]. Optics Letters, 47, 289-292(2022).
[31] Xu C J, Zhang J Q, Liu M et al. Recent advances in luminescence and lasing research in ZBYA glass[J]. Optical Materials Express, 12, 1542-1554(2022).
[32] Majewski M R, Amin M Z, Berthelot T et al. Directly diode-pumped mid-infrared dysprosium fiber laser[J]. Optics Letters, 44, 5549-5552(2019).
[33] Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Optics Letters, 34, 2327-2329(2009).
[34] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).
[35] Boilard T, Fortin V, Lemieux-Tanguay M et al. 1.7 W holmium-doped fluoroindate fiber laser at 3920 nm[J]. Optics Letters, 49, 2677-2680(2024).
[36] Tsang Y H, El-Taher A E. Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at ∼1.1 µm by an Yb fiber laser[J]. Laser Physics Letters, 8, 818-822(2011).
[37] Wang C C, Luo H Y, Yang J et al. Watt-level ~3.5 μm Er3+-doped ZrF4 fiber laser using dual-wavelength pumping at 655 and 1981 nm[J]. IEEE Photonics Technology Letters, 33, 784-787(2021).
[38] Zhang X, Tong C Z, Cai K D et al. 2.3 W 3.5 μm fiber laser based on bidirectional pumping[J]. Chinese Journal of Lasers, 49, 1801001(2022).
[39] Jia S J, Jia Z X, Yao C F et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing[J]. Laser Physics, 28, 015802(2018).
[40] Xu C J, Zhang J Q, Zhao X T et al. Two-watt mid-infrared laser emission in robust fluorozirconate fibers[J]. Optics Letters, 47, 1399-1402(2022).
[41] Shahriari M R, Iqbal T, Foy P R et al. Fabrication of AlF3-based glass fibers[J]. MRS Online Proceedings Library, 172, 163-168(1989).
[42] Zhang J Q, Liu M, Xu N N et al. 2.86 μm lasing in Ho3+/Pr3+ codoped fluoroaluminate glass fiber (invited)[J]. Infrared and Laser Engineering, 49, 20201062(2020).
[43] Iqbal T, Shahriari M R, Foy P et al. AlF3-based glass fibres with enhanced optical transmission[J]. Electronics Letters, 27, 110-111(1991).
[44] Iqbal T, Shahriari M R, Foy P et al. Preliminary study of fiber drawing of AlF3-based glasses[J]. Materials Science and Engineering B, 12, 299-303(1992).
[45] Kajikawa S, Terao T, Motokoshi S et al. Visible laser oscillation in single-mode Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C], SM3Q.4(2016).
[46] Kajikawa S, Terao T, Yoshida M et al. Development of visible nano second pulse laser in a Pr-doped double-clad structured waterproof fluoride glass fiber using semiconductor saturable absorber mirror[C](2016).
[47] Liu M, Zhang J Q, Xu N N et al. Room-temperature watt-level and tunable ∼3 µm lasers in Ho3+/Pr3+ co-doped AlF3-based glass fiber[J]. Optics Letters, 46, 2417-2420(2021).
[48] Zhang J Q, Zhao H Y, Wang R C et al. 3.9 µm emission in Nd3+ sensitized Ho3+ doped fluoroaluminate glasses[J]. Journal of Alloys and Compounds, 889, 161684(2021).
[49] Zhang J, Wang R C, Liu M et al. ZnF2-modified AlF3-based fluoride glasses with enhanced mid-infrared 3.5 µm emission[J]. Journal of the American Ceramic Society, 105, 4691-4698(2022).
[50] Seddon A B, Cardoso A V. The devitrification behaviour of infrared transmitting AlF3-[MgF2-CaF2-SrF2-BaF2]-YF3 glasses. I: during melt cooling[J]. Physics and Chemistry of Glasses, 35, 52-58(1994).
[51] Liu M, Xu N N, Shen Y W et al. High water-resistant and thermal stable fluoride fibers for mid-infrared laser[J]. IEEE Photonics Technology Letters, 36, 749-752(2024).
[52] Penilla E H, Devia-Cruz L F, Duarte M A et al. Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials[J]. Light: Science & Applications, 7, 33(2018).
[53] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).
[54] Zhu X S, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in OptoElectronics, 2010, 501956(2010).
[55] Zhang Z, Cheng Z W, Wang S B et al. Fabrication of double-cladding fluoroindate glass fibers and watt-level 2.7 μm laser application[J]. Infrared Physics & Technology, 139, 105299(2024).
[56] Kawamoto Y, Kono A. Raman spectroscopic study of AlF3-CaF2-BaF2 glasses[J]. Journal of Non-Crystalline Solids, 85, 335-345(1986).
[57] Xu N N, Yang Z Y, Zhang J Q et al. Direct femtosecond laser inscription of Bragg gratings in Ho3+/Pr3+ co-doped AlF3-based glass fibers for a 2.86 µm laser[J]. Optics Letters, 47, 597-600(2022).
[58] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 24, 935-937(1988).
[59] Herak R M, Malčić S S, Manojlovič L M. The crystal structure of sodium tridecafluorodizirconate[J]. Acta Crystallographica, 18, 520-522(1965).
[60] Poppe E, Srinivasan B, Jain R K. 980 nm diode-pumped continuous wave mid-IR (2.7 µm) fibre laser[J]. Electronics Letters, 34, 2331-2333(1998).
[61] Newburgh G A, Dubinskii M. Power and efficiency scaling of Er∶ZBLAN fiber laser[J]. Laser Physics Letters, 18, 095102(2021).
[62] Guo C Y, Dong F L, Shen P S et al. 20 W mid-infrared fiber laser operating at 2.8 μm[J]. Chinese Journal of Lasers, 48, 1416001(2021).
[63] Zhang J X, Fu S J, Sheng Q et al. Efficient 33.8 W mid-infrared fiber laser operating at 2.8 μm[J]. Chinese Journal of Lasers, 50, 0715001(2023).
[64] Lemieux-Tanguay M, Boilard T, Paradis P et al. 2 W monolithic fiber laser at 3.8 µm[J]. APL Photonics, 9, 071301(2024).
[65] Zhao H Y, Li A Z, Yi Y T et al. A Tm3+-doped ZrF4-BaF2-YF3-AlF3 glass microsphere laser in the 2.0 μm wavelength region[J]. Journal of Luminescence, 212, 207-211(2019).
[66] Zhao H Y, Jia S J, Wang X et al. Investigation of Dy3+/Tm3+ co-doped ZrF4-BaF2-YF3-AlF3 fluoride glass for efficient 2.9 μm mid-infrared laser applications[J]. Journal of Alloys and Compounds, 817, 152754(2020).
[67] Wang R C, Zhao H Y, Zhang M et al. Enhancement mechanisms of Tm3+-codoping on 2 μm emission in Ho3+ doped fluoroindate glasses under 888 nm laser excitation[J]. Ceramics International, 46, 6973-6977(2020).
[68] Ebendorff-Heidepriem H, Szabó I, Rasztovits Z E. Crystallization behavior and spectroscopic properties of Ho3+-doped ZBYA-fluoride glass[J]. Optical Materials, 14, 127-136(2000).
[69] Xu C J, Zhang J Q, Liu M et al. Midinfrared laser in Ho3+-doped ZBYA glass fiber[J]. Chinese Journal of Lasers, 49, 0101016(2022).
[70] Zhao H Y, Wang R C, Wang X et al. Intense mid-infrared emission at 3.9 µm in Ho3+-doped ZBYA glasses for potential use as a fiber laser[J]. Optics Letters, 45, 4272-4275(2020).
[71] Ribeiro C T M, Zanatta A R, Nunes L A O et al. Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses[J]. Journal of Applied Physics, 83, 2256-2260(1998).
[72] Gomes L, Fortin V, Bernier M et al. Excited state absorption and energy transfer in Ho3+-doped indium fluoride glass[J]. Optical Materials, 66, 519-526(2017).
[73] Zhang P X, Hang Y, Li Z et al. Sensitization and deactivation effects of Nd3+ on the Ho3+: 3.9 μm emission in a PbF2 crystal[J]. Optics Letters, 42, 2559-2562(2017).
[74] Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Optics Letters, 43, 1926-1929(2018).
[75] Maze G, Poulain M, Carre J Y et al. Fluorinated glasses[J]. Journal of Fluorine Chemistry, 78, 206-207(1996).
[76] Boutarfaia A, Poulain M A, Poulain M J et al. Fluoroindate glasses based on the InF3-BaF2-YF3 system[J]. Journal of Non-Crystalline Solids, 213, 36-39(1997).
[77] Poulain M, Messaddeq Y. Divalent fluoride glasses[J]. Materials Science Forum, 32/33, 131-136(1991).
[78] Videau J J, Dance J M, Portier J et al. Etude de verres à base de InF3[J]. Revue De Chimie Minérale, 23, 789-795(1986).
[79] Dong D K, Bo Z L, Zhu J Q et al. Study of properties of InF3-based glasses containing different valent fluorides[J]. Journal of Non-Crystalline Solids, 204, 260-264(1996).
[80] Mastelaro V, Ribeiro S, Messaddeo Y et al. EXAFS and Raman spectroscopy study of binary indium fluoride glasses[J]. Journal of Materials Science, 31, 3441-3446(1996).
[81] Wang R C, Zhang Z, Xu C J et al. Recent research advances of mid-infrared fluoroindate glass and fiber lasers(invited)[J]. Infrared and Laser Engineering, 52, 20230149(2023).
[82] Wang R C, Zhang J Q, Zhao H Y et al. 3.9 μm emission and energy transfer in ultra-low OH-, Ho3+/Nd3+ co-doped fluoroindate glasses[J]. Journal of Luminescence, 225, 117363(2020).
[83] Zhang Z, Wang R C, Liu M et al. Enhanced 3.9 µm emission from diode pumped Ho3+/Eu3+ codoped fluoroindate glasses[J]. Optics Letters, 46, 2031-2034(2021).
[84] Wang R C, Zhang Z, Cheng Z W et al. Watt-level fluoroindate based glass fibre laser operating around 3 μm[J]. Journal of Luminescence, 256, 119626(2023).
[85] Zhang Z, Cheng Z W, Wang R C et al. Deactivation effects of Tb3+ on Ho3+ emission in fluoroindate glasses for 3.9 μm laser applications[J]. Ceramics International, 49, 12772-12778(2023).
[86] Bei J F, Foo H T C, Qian G J et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 4, 1213-1226(2014).
[87] Cheng Z W, Zhang Z, Wang R C et al. Numerical modeling of dual-wavelength pumped heavily-Ho3+-doped fluoroindate fiber lasers with efficient output at 3.92 μm[J]. Journal of Lightwave Technology, 41, 7021-7028(2023).
[88] Zhou F, Li J F, Luo H Y et al. Numerical analysis of 3.92 μm dual-wavelength pumped heavily-holmium-doped fluoroindate fiber lasers[J]. Journal of Lightwave Technology, 39, 633-645(2021).
[89] Cierullies S, Renner H, Brinkmeyer E. Numerical optimization of multi-wavelength and cascaded Raman fiber lasers[J]. Optics Communications, 217, 233-238(2003).