• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 2, 579 (2024)
WANG Pan1, LU Xinghai1, WANG Muhan1, ZHANG Yue1..., XU Hongjian2 and HOU Dongshuai1,*|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Pan, LU Xinghai, WANG Muhan, ZHANG Yue, XU Hongjian, HOU Dongshuai. Molecular Dynamics Simulation of Nucleation and Growth of Calcium Carbonate in Confined Space[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 579 Copy Citation Text show less
    References

    [1] SOUSA V, BOGAS J A, REAL S, et al. Industrial production of recycled cement: Energy consumption and carbon dioxide emission estimation[J]. Environ Sci Pollut Res, 2023, 30(4): 8778-8789.

    [2] MAKUL N. Advanced smart concrete - A review of current progress, benefits and challenges[J]. J Clean Prod, 2020, 274: 122899.

    [3] NIE S, ZHOU J, YANG F, et al. Analysis of theoretical carbon dioxide emissions from cement production: methodology and application[J]. J Clean Prod, 2022, 334: 130270.

    [4] LIU J H, WANG Y, LI Y Q, et al. Carbonated concrete brick capturing carbon dioxide from cement kiln exhaust gas[J]. Case Stud Constr Mater, 2022, 17: e01474.

    [5] BARCELO L, KLINE J, WALENTA G, et al. Cement and carbon emissions[J]. Mater Struct, 2014, 47(6): 1055-1065.

    [6] WU M, ZHANG Y S, JI Y S, et al. Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures[J]. J Clean Prod, 2018, 196: 358-369.

    [7] MADDALENA R, ROBERTS J J, HAMILTON A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements[J]. J Clean Prod, 2018, 186: 933-942.

    [8] YONG L, YU R, SHUI Z H, et al. Development of an environmental Ultra-High Performance Concrete (UHPC) incorporating carbonated recycled coarse aggregate[J]. Constr Build Mater, 2023, 362: 129657.

    [9] LIU J, ZHANG W Z, JIN H S, et al. Exploring the carbon capture and sequestration performance of biochar-artificial aggregate using a new method[J]. Scie Total Environ, 2023, 859: 160423.

    [10] GALAN I, ANDRADE C, MORA P, et al. Sequestration of CO2 by concrete carbonation[J]. Environ Sci Technol, 2010, 44(8): 3181-3186.

    [11] VOGLER N, DRABETZKI P, LINDEMANN M, et al. Description of the concrete carbonation process with adjusted depth-resolved thermogravimetric analysis[J]. J Therm Anal Calorim, 2022, 147(11): 6167-6180.

    [12] BORGES P H R, COSTA J O, MILESTONE N B, et al. Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS[J]. Cem Concr Res, 2010, 40(2): 284-292.

    [13] MORANDEAU A, THIéRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J]. Cem Concr Res, 2014, 56: 153-170.

    [14] CHANG J, FANG Y F. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate (C-S-H) by QXRD and TG/MS[J]. J Therm Anal Calorim, 2015, 119(1): 57-62.

    [15] WANG D, FANG Y F, ZHANG Y Y, et al. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S[J]. J CO2 Util, 2019, 34: 149-162.

    [16] MARTíNEZ-RAMíREZ S, FERNáNDEZ-CARRASCO L. Carbonation of ternary cement systems[J]. Constr Build Mater, 2012, 27(1): 313-318.

    [17] LANGE L C, HILLS C D, POOLE A B. Preliminary investigation into the effects of carbonation on cement-solidified hazardous wastes[J]. Environ Sci Technol, 1996, 30(1): 25-30.

    [18] CHANG J, LI Y, CAO M L, et al. Influence of magnesium hydroxide content and fineness on the carbonation of calcium hydroxide[J]. Constr Build Mater, 2014, 55: 82-88.

    [19] SULAPHA P, WONG S F, WEE T H, et al. Carbonation of concrete containing mineral admixtures[J]. J Mater Civ Eng, 2003, 15(2): 134-143.

    [20] ZHAN B J, POON C S, LIU Q, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Constr Build Mater, 2014, 67: 3-7.

    [21] FANG Y F, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J]. Constr Build Mater, 2015, 76: 360-365.

    [22] FENG H T, LI X, XING Y H, et al. Adsorption of CO32-/HCO3- on a quartz surface: Cluster formation, pH effects, and mechanistic aspects[J]. Phys Chem Chem Phys, 2023, 25(11): 7951-7964.

    [23] YIN B, XU T Y, HOU D S, et al. Superhydrophobic anticorrosive coating for concrete through in situ bionic induction and gradient mineralization[J]. Constr Build Mater, 2020, 257: 119510.

    [24] DEMICHELIS R, RAITERI P, GALE J D, et al. Stable prenucleation mineral clusters are liquid-like ionic polymers[J]. Nat Commun, 2011, 2(1): 1-8.

    [25] HOU D S, MA H Y, YU Z, et al. Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties[J]. Acta Mater, 2014, 67: 81-94.

    [26] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proc Natl Acad Sci USA, 2009, 106(38): 16102-16107.

    [27] QIN L, MAO X T, CUI Y F, et al. New insights into the early stage nucleation of calcium carbonate gels by reactive molecular dynamics simulations[J]. J Chem Phys, 2022, 157(23): 9.

    [28] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phys Chem B, 2004, 108(4): 1255-1266.

    [29] HOU D S, YANG Q R, WANG P, et al. Unraveling disadhesion mechanism of epoxy/CSH interface under aggressive conditions[J]. Cem Concr Res, 2021, 146: 106489.

    [30] HOU D S, JIA Y T, YU J, et al. Transport properties of sulfate and chloride ions confined between calcium silicate hydrate surfaces: A molecular dynamics study[J]. J Phys Chem C, 2018, 122(49): 28021-28032.

    [31] RAITERI P, DEMICHELIS R, GALE J D. Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation[J]. J Phys Chem C, 2015, 119(43): 24447-24458.

    [32] HEBERLING F, KLA?I? T, RAITERI P, et al. Structure and surface complexation at the calcite (104)-water interface[J]. Environ Sci Technol, 2021, 55(18): 12403-12413.

    [33] SCHUITEMAKER A, AUFORT J, KOZIARA K B, et al. Simulating the binding of key organic functional groups to aqueous calcium carbonate species[J]. Phys Chem Chem Phys, 2021, 23(48): 27253-27265.

    [34] REISCHL B, RAITERI P, GALE J D, et al. Atomistic simulation of atomic force microscopy imaging of hydration layers on calcite, dolomite, and magnesite surfaces[J]. J Phys Chem C, 2019, 123(24): 14985-14992.

    [35] HOSSEINI E, ZAKERTABRIZI M, HABIBNEJAD KORAYEM A, et al. Orbital overlapping through induction bonding overcomes the intrinsic delamination of 3D-printed cementitious binders[J]. ACS Nano, 2020, 14(8): 9466-9477.

    [36] DI TOMMASO D, DE LEEUW N H. The onset of calcium carbonate nucleation: A density functional theory molecular dynamics and hybrid microsolvation/continuum study[J]. J Phys Chem B, 2008, 112(23): 6965-6975.

    [37] AVARO J, MOON E M, ROSE J, et al. Calcium coordination environment in precursor species to calcium carbonate mineral formation[J]. Geochim Cosmochim Acta, 2019, 259: 344-357.

    [38] LOPEZ-BERGANZA J A, DIAO Y J, PAMIDIGHANTAM S, et al. Ab initio studies of calcium carbonate hydration[J]. J Phys Chem A, 2015, 119(47): 11591-11600.

    [39] KELLERMEIER M, PICKER A, KEMPTER A, et al. A straightforward treatment of activity in aqueous CaCO3 solutions and the consequences for nucleation theory[J]. Adv Mater, 2014, 26(5): 752-757.

    [40] WANG B B, XIAO Y, XU Z M. Variation in properties of pre-nucleation calcium carbonate clusters induced by aggregation: A molecular dynamics study[J]. Crystals, 2021, 11(2): 102.

    [41] GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chem Soc Rev, 2014, 43(7): 2348-2371.

    [42] SHEN X Y, et al. New insights into the non-classical nucleation of C-S-H[J]. Cem Concr Res, 2023, 168: 12.

    [43] HOU D S, LI T, HAN Q H, et al. Insight on the sodium and chloride ions adsorption mechanism on the ettringite crystal: Structure, dynamics and interfacial interaction[J]. Comput Mater Sci, 2018, 153: 479-492.

    [44] QIAO G, HOU D S, WANG P, et al. Insights on failure modes of calcium-silicate-hydrate interface strengthened by polyacrylamides: Structure, dynamic and mechanical properties[J]. Constr Build Mater, 2021, 278: 122406.

    [45] WANG P, YANG Q R, WANG M H, et al. Theoretical investigation of epoxy detachment from C-S-H interface under aggressive environment[J]. Constr Build Mater, 2020, 264: 120232.

    [46] SUN M, GENG G Q, XIN D B, et al. Molecular quantification of the decelerated dissolution of tri-calcium silicate (C3S) due to surface adsorption[J]. Cem Concr Res, 2022, 152: 106682.

    WANG Pan, LU Xinghai, WANG Muhan, ZHANG Yue, XU Hongjian, HOU Dongshuai. Molecular Dynamics Simulation of Nucleation and Growth of Calcium Carbonate in Confined Space[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 579
    Download Citation