• Acta Photonica Sinica
  • Vol. 50, Issue 9, 0914002 (2021)
Shuhong ZHANG1、2, Peter YUN2, Tao YANG1, Qiang HAO2, and Xin WANG2、*
Author Affiliations
  • 1Institute of Modern Physics,School of Physics Northwest University, Northwest University, Xi'an70027, China
  • 2National Time Service Center of Chinese Academy of Sciences, Xi'an710600, China
  • show less
    DOI: 10.3788/gzxb20215009.0914002 Cite this Article
    Shuhong ZHANG, Peter YUN, Tao YANG, Qiang HAO, Xin WANG. Power Stability of a Semiconductor Laser Used in Atomic Clocks[J]. Acta Photonica Sinica, 2021, 50(9): 0914002 Copy Citation Text show less
    References

    [1] J VANIER. Atomic clocks based on coherent population trapping: a review. Applied Physics B, 81, 421-442(2005).

    [2] M ABDEL HAFIZ, R BOUDOT. A coherent population trapping Cs vapor cell atomic clock based on push-pull optical pumping. Journal of Applied Physics, 118, 124903(2015).

    [3] J VANIER, C MANDACHE. The passive optically pumped Rb frequency standard: the laser approach. Applied Physics B, 87, 565-593(2007).

    [4] T BANDI, C AFFOLDERBACH, C STEFANUCCI et al. Compact high-performance continuous-wave double-resonance rubidium standard with 1.4 x 10(-13) tau(-1/2) stability. IEEE Transactions on Vltrasonics Ferroelectrics and Frequency Control, 61, 1769(2014).

    [5] M ABDEL HAFIZ, G COGET, P YUN et al. A high-performance Raman-Ramsey Cs vapor cell atomic clock. Journal of Applied Physics, 121, 104903(2017).

    [6] S MICALIZIO, C E CALOSSO, A GODONE et al. Metrological characterization of the pulsed Rb clock with optical detection. Metrologia, 49, 425-436(2012).

    [7] F TRICOT. Analyse et réduction des sources d'instabilité de fréquence dans une horloge CPT compacte. Sorbonne Université(2017).

    [8] N ALMAT, M GHARAVIPOUR, W MORENO et al. Long-term stability analysis toward <10(-14) level for a highly compact POP Rb cell atomic clock. IEEE Transactions on Vltrasonics Ferroelectrics and Frequency Control, 67, 207-216(2020).

    [9] F HAKIMI, J D MOORES. RIN-reduced light source for ultra-low noise interferometric fibre optic gyroscopes. Electronics Letters, 49, 205-207(2013).

    [10] M TRAD NERY, S L DANILISHIN, J R VENNEBERG et al. Fundamental limits of laser power stabilization via a radiation pressure transfer scheme. Optics Letters, 45, 3969-3972(2020).

    [11] K W MARTIN, G PHELPS, N D LEMKE et al. Compact optical atomic clock based on a two-photon transition in rubidium. Physical Review Applied, 9(2018).

    [12] Fang LIU, Chun WANG, Liufeng LI et al. Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator. Optics & Laser Technology, 45, 775-781(2013).

    [13] L DUAN, J FANG, R LI et al. Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer. Optics Express, 23, 32481-32489(2015).

    [14] J JUNKER, P OPPERMANN, B WILLKE. Shot-noise-limited laser power stabilization for the AEI 10 m Prototype interferometer. Optics Letters, 42, 755-758(2017).

    [15] H P LAYER. Acoustooptic modulator intensity servo. Applied Optics, 18, 2947-2949(1979).

    [16] F TRICOT, D H PHUNG, M LOURS et al. Power stabilization of a diode laser with an acousto-optic modulator. Review of Scientific Instruments, 89, 113112(2018).

    [17] F SEIFERT. Power stabilization of high power lasers for second generation gravitational wave detectors. Technische Informationsbibliothek und Universitätsbibliothek Hannover(2009).

    [18] P YUN, F TRICOT, C E CALOSSO et al. High-performance coherent population trapping clock with polarization modulation. Physical Review Applied, 7(2017).

    [19] P KWEE, B WILLKE, K DANZMANN. New concepts and results in laser power stabilization. Applied Physics B, 102, 515-522(2011).

    Shuhong ZHANG, Peter YUN, Tao YANG, Qiang HAO, Xin WANG. Power Stability of a Semiconductor Laser Used in Atomic Clocks[J]. Acta Photonica Sinica, 2021, 50(9): 0914002
    Download Citation