• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 2, 725 (2024)
ZUO Yibing1,2,*, LIAO Yishun3, YANG Yingzi4, and YE Guang5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: Cite this Article
    ZUO Yibing, LIAO Yishun, YANG Yingzi, YE Guang. Phase Evolution and Durability of Alkali-Activated Materials - A Thermodynamic Modelling Review[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 725 Copy Citation Text show less
    References

    [1] DUXSON P, FERNáNDEZ-JIMéNEZ A, PROVIS J L, et al. Geopolymer technology: The current state of the art[J]. J Mater Sci, 2007, 42(9): 2917-2933.

    [2] YAN Peiyu. J Chin Ceram Soc, 2022, 50(8): 2067-2069.

    [3] SHI C J, QU B, PROVIS J L. Recent progress in low-carbon binders[J]. Cem Concr Res, 2019, 122: 227-250.

    [4] NEHDI M L, YASSINE A. Mitigating Portland cement CO2 emissions using alkali-activated materials: System dynamics model[J]. Materials, 2020, 13(20): 4685.

    [5] DEVENTER J S J, WHITE C E, MYERS R J. A roadmap for production of cement and concrete with low-CO2 emissions[J]. Waste Biomass Valorization, 2021, 12(9): 4745-4775.

    [6] WANG Aiguo, ZHENG Yi, ZHANG Zuhua, et al. Engineering, 2020, 6(6): 237-261.

    [7] JIANG D D, SHI C J, ZHANG Z H. Recent progress in understanding setting and hardening of alkali-activated slag (AAS) materials[J]. Cem Concr Compos, 2022, 134: 104795.

    [8] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annu Rev Mater Res, 2014, 44: 299-327.

    [9] VAN DEVENTER J S J, PROVIS J L, DUXSON P. Technical and commercial progress in the adoption of geopolymer cement[J]. Miner Eng, 2012, 29: 89-104.

    [10] GIERGICZNY Z. Fly ash and slag[J]. Cem Concr Res, 2019, 124: 105826.

    [11] LI C, SUN H H, LI L T. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cem Concr Res, 2010, 40(9): 1341-1349.

    [12] PROVIS J L, LUKEY G C, VAN DEVENTER J S J. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results[J]. Chem Mater, 2005, 17(12): 3075-3085.

    [13] ROWLES M R, O’CONNOR B H. Chemical and structural microanalysis of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite[J]. J Am Ceram Soc, 2009, 92(10): 2354-2361.

    [14] DAI X D, AYDIN S, YARDIMCI M Y, et al. Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures[J]. Cem Concr Compos, 2022, 133: 104715.

    [15] ZUO Y B, NEDELJKOVI? M, YE G. Pore solution composition of alkali-activated slag/fly ash pastes[J]. Cem Concr Res, 2019, 115: 230-250.

    [16] PUERTAS F, FERNáNDEZ-JIMéNEZ A, BLANCO-VARELA M T. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate[J]. Cem Concr Res, 2004, 34(1): 139-148.

    [17] MYERS R J, BERNAL S A, PROVIS J L. Phase diagrams for alkali-activated slag binders[J]. Cem Concr Res, 2017, 95: 30-38.

    [18] BEN HAHA M, LE SAOUT G, WINNEFELD F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cem Concr Res, 2011, 41(3): 301-310.

    [19] MA Y, HU J, YE G. The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash[J]. J Mater Sci, 2012, 47(11): 4568-4578.

    [20] ZHANG Z M, CHEN R, HU J, et al. Corrosion behavior of the reinforcement in chloride-contaminated alkali-activated fly ash pore solution[J]. Compos B Eng, 2021, 224: 109215.

    [21] ?Z?ELIK V O, WHITE C E. Nanoscale charge-balancing mechanism in alkali-substituted calcium-silicate-hydrate gels[J]. J Phys Chem Lett, 2016, 7(24): 5266-5272.

    [22] MUNDRA S, PRENTICE D P, BERNAL S A, et al. Modelling chloride transport in alkali-activated slags[J]. Cem Concr Res, 2020, 130: 106011.

    [23] LIU Q F, CAI Y X, PENG H, et al. A numerical study on chloride transport in alkali-activated fly ash/slag concretes[J]. Cem Concr Res, 2023, 166: 107094.

    [24] ZUO Y B, YE G. Lattice Boltzmann simulation of the dissolution of slag in alkaline solution using real-shape particles[J]. Cem Concr Res, 2021, 140: 106313.

    [25] PACHECO-TORGAL F, LABRINCHA J, LEONELLI C, et al. Handbook of alkali-activated cements, mortars and concretes[M]. Elsevier, 2014.

    [26] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cem Concr Compos, 2014, 45: 125-135.

    [27] PULIGILLA S, MONDAL P. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction[J]. Cem Concr Res, 2015, 70: 39-49.

    [28] BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation[J]. Cem Concr Res, 2013, 53: 127-144.

    [29] MALDONADO-ALAMEDA à, GIRO-PALOMA J, ALFOCEA-ROIG A, et al. Municipal solid waste incineration bottom ash as sole precursor in the alkali-activated binder formulation[J]. Appl Sci, 2020, 10(12): 4129.

    [30] ZHU W P, CHEN X, STRUBLE L J, et al. Quantitative characterization of aluminosilicate gels in alkali-activated incineration bottom ash through sequential chemical extractions and deconvoluted nuclear magnetic resonance spectra[J]. Cem Concr Compos, 2019, 99: 175-180.

    [31] MYERS R J, BERNAL S A, SAN NICOLAS R, et al. Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model[J]. Langmuir, 2013, 29(17): 5294-5306.

    [32] MYERS R J, BERNAL S A, PROVIS J L. A thermodynamic model for C-(N-) A-S-H gel: CNASH_ss. Derivation and validation[J]. Cem Concr Res, 2014, 66: 27-47.

    [33] MYERS R J, LOTHENBACH B, BERNAL S A, et al. Thermodynamic modelling of alkali-activated slag cements[J]. Appl Geochem, 2015, 61: 233-247.

    [34] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cem Concr Res, 2019, 115: 472-506.

    [35] GARCíA-LODEIRO I, FERNáNDEZ-JIMéNEZ A, PALOMO A, et al. Effect of calcium additions on N-A-S-H cementitious gels[J]. J Am Ceram Soc, 2010, 93(7): 1934-1940.

    [36] BELL J L, SARIN P, DRIEMEYER P E, et al. X-Ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer)[J]. J Mater Chem, 2008, 18(48): 5974-5981.

    [37] WHITE C E, PROVIS J L, PROFFEN T, et al. The effects of temperature on the local structure of metakaolin-based geopolymer binder: A neutron pair distribution function investigation[J]. J Am Ceram Soc, 2010, 93(10): 3486-3492.

    [38] ZUO Y, Experimental study and numerical simulation of the reaction process and microstructure formation of alkali-activated materials[D]. Delft University of Technology, 2019.

    [39] BALONIS M. Thermodynamic modelling of temperature effects on the mineralogy of Portland cement systems containing chloride[J]. Cem Concr Res, 2019, 120: 66-76.

    [40] CAO Y Z, GUO L P, CHEN B, et al. Thermodynamic modelling and experimental investigation on chloride binding in cement exposed to chloride and chloride-sulfate solution[J]. Constr Build Mater, 2020, 246: 118398.

    [41] KULIK D A, WAGNER T, DMYTRIEVA S V, et al. GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes[J]. Comput Geosci, 2013, 17(1): 1-24.

    [42] WAGNER T, KULIK D A, HINGERL F F, et al. Gem-selektor geochemical modeling package: Tsolmod library and data interface for multicomponent phase models[J]. Can Mineral, 2012, 50(5): 1173-1195.

    [43] HELGESON H C, KIRKHAM D H, FLOWERS G C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb[J]. Am J Sci, 1981, 281(10): 1249-1516.

    [44] LOTHENBACH B, GRUSKOVNJAK A. Hydration of alkali-activated slag: Thermodynamic modelling[J]. Adv Cem Res, 2007, 19(2): 81-92.

    [45] MYERS R J. Thermodynamic Modelling of CaO-Al2O3-SiO2-H2O- Based Cements[D]. University of Sheffield, 2015.

    [46] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part I: Effect of MgO[J]. Cem Concr Res, 2011, 41(9): 955-963.

    [47] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: Effect of Al2O3[J]. Cem Concr Res, 2012, 42(1): 74-83.

    [48] YE H L, RADLI?SKA A. Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag[J]. J Adv Concr Technol, 2016, 14(5): 245-260.

    [49] ZUO Y B, NEDELJKOVI? M, YE G. Coupled thermodynamic modelling and experimental study of sodium hydroxide activated slag[J]. Constr Build Mater, 2018, 188: 262-279.

    [50] KE X Y, BERNAL S A, PROVIS J L, et al. Thermodynamic modelling of phase evolution in alkali-activated slag cements exposed to carbon dioxide[J]. Cem Concr Res, 2020, 136: 106158.

    [51] ZUO Y B. Effect of chloride salt on the phase evolution in alkali-activated slag cements through thermodynamic modelling[J]. Appl Geochem, 2022, 136: 105169.

    [52] ZUO Y B. Thermodynamic modeling of the phase evolution in alkali-activated slag cements with sulfate salt exposure[J]. J Am Ceram Soc, 2022, 105(12): 7658-7675.

    [53] ZUO Yibing, LIAO Yishun, YE Guang. J Build Mater, 2023, 26(1): 7-13.

    [54] REDDY K C, KIM G M, PARK S. Modeling the phase evolution in alkali-activated slag cements upon interaction with seawater[J]. Case Stud Constr Mater, 2022, 17: e01476.

    [55] LOTHENBACH B, BERNARD E, M?DER U. Zeolite formation in the presence of cement hydrates and albite[J]. Phys Chem Earth Parts A/B/C, 2017, 99: 77-94.

    [56] CHEN B, ZUO Y, ZHANG S, et al. Reactivity and leaching potential of municipal solid waste incineration (MSWI) bottom ash as supplementary cementitious material and precursor for alkali-activated materials[J]. Constr Build Mater, 2023, 409: 133890.

    [57] MALDONADO-ALAMEDA A, GIRO-PALOMA J, SVOBODOVA- SEDLACKOVA A, et al. Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size[J]. J Clean Prod, 2020, 242: 118443.

    [58] HOSOKAWA Y, YAMADA K, JOHANNESSON B, et al. Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums[J]. Mater Struct, 2011, 44(9): 1577-1592.

    [59] GUO B B, HONG Y, QIAO G F, et al. A COMSOL-PHREEQC interface for modeling the multi-species transport of saturated cement-based materials[J]. Constr Build Mater, 2018, 187: 839-853.

    [60] SHARMILAN S, STANG H, MICHEL A. A multi-species reactive transport model based on ion-solid phase interaction for saturated cement-based materials[J]. Cem Concr Res, 2022, 159: 106861.

    [61] KE X Y, DUAN Y. Coupling machine learning with thermodynamic modelling to develop a composition-property model for alkali-activated materials[J]. Compos B Eng, 2021, 216: 108801.

         ZUO Y B, YE G. GeoMicro3D: A novel numerical model for simulating the reaction process and microstructure formation of alkali-activated slag[J]. Cem Concr Res, 2021, 141: 106328.

    ZUO Yibing, LIAO Yishun, YANG Yingzi, YE Guang. Phase Evolution and Durability of Alkali-Activated Materials - A Thermodynamic Modelling Review[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 725
    Download Citation