• Nano-Micro Letters
  • Vol. 16, Issue 1, 062 (2024)
Junyan Wang1, Wanchun Guo1,*, Kesong Tian1,**, Xinta Li1..., Xinyu Wang1, Panhua Li1, Yu Zhang1, Bosen Zhang1, Biao Zhang2, Shuhu Liu3, Xueai Li1, Zhaopeng Xu1, Junjie Xu4, Haiyan Wang1,*** and Yanglong Hou2,****|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People’s Republic of China
  • 2Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Centre for Engineering Science and Advanced Technology, School of Materials Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
  • 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
  • 4Xi’an Rare Metal Materials Institute Co. Ltd, Xi’an, 710016, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01283-3 Cite this Article
    Junyan Wang, Wanchun Guo, Kesong Tian, Xinta Li, Xinyu Wang, Panhua Li, Yu Zhang, Bosen Zhang, Biao Zhang, Shuhu Liu, Xueai Li, Zhaopeng Xu, Junjie Xu, Haiyan Wang, Yanglong Hou. Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material[J]. Nano-Micro Letters, 2024, 16(1): 062 Copy Citation Text show less
    References

    [1] Y. Li, Y. Lu, P. Adelhelm, M.M. Titirici, Y.S. Hu, Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019).

    [2] K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou et al., Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 370, 136–147 (2019).

    [3] K. Li, S. Feng, C. Jing, Y. Chen, X. Liu et al., Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. 55, 13773–13776 (2019).

    [4] T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020).

    [5] Y.G. Lee, J. Lee, G.H. An, Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous supercapacitors. Adv. Funct. Mater. 31, 2104256 (2021).

    [6] J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023).

    [7] K. Li, Z. Guo, Q. Sun, X. Dai, Y. Li et al., Phosphorus vacancy regulation and interfacial coupling of biotemplate derived CoP@FeP2 heterostructure to boost pseudocapacitive reaction kinetics. Chem. Eng. J. 454, 140223 (2023).

    [8] Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023).

    [9] K. Li, Y. Xiao, T. Zheng, Q. Sun, Y. Zhang et al., Vanadium doping and phosphorus vacancy co-regulation of biotemplate derived three-dimensional cobalt phosphide to enhance pseudocapacitance performance. Appl. Surf. Sci. 622, 156950 (2023).

    [10] X. Pu, L. Li, H. Song, C. Du, Z. Zhao et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015).

    [11] M. Qiu, P. Sun, G. Gui, Y. Tong, W. Mai, A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging. ACS Nano 13, 8246–8255 (2019).

    [12] X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang et al., Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020).

    [13] R. Liu, M. Takakuwa, A. Li, D. Inoue, D. Hashizume et al., An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv. Energy Mater. 10, 2000523 (2020).

    [14] J. Meng, G. Wu, X. Wu, H. Cheng, Z. Xu et al., Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro-energy-storage. Adv. Sci. 7, 1901931 (2020).

    [15] C. Shao, Y. Zhao, L. Qu, Recent advances in highly integrated energy conversion and storage system. Susmat 2, 142–160 (2022).

    [16] R. Liu, Z. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022).

    [17] J. Lv, Y.X. Tan, J. Xie, R. Yang, M. Yu et al., Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. Int. Ed. 57, 12716–12720 (2018).

    [18] Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao et al., Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 10, 1903930 (2020).

    [19] X. Xue, S. Wang, W. Guo, Y. Zhang, Z. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012).

    [20] K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11, 2351 (2020).

    [21] A. Al-zubaidi, X. Ji, J. Yu, Thermal charging of supercapacitors: a perspective. Sustain. Energ. Fuels 1, 1457–1474 (2017).

    [22] X. Fu, Z. Xia, R. Sun, H. An, F. Qi et al., A self-charging hybrid electric power device with high specific energy and power. ACS Energy Lett. 3, 2425–2432 (2018).

    [23] L. Ma, Y. Zhao, X. Ji, J. Zeng, Q. Yang et al., A usage scenario independent “air chargeable” flexible zinc ion energy storage device. Adv. Energy Mater. 9, 1900509 (2019).

    [24] G. Pankratova, P. Bollella, D. Pankratov, L. Gorton, Supercapacitive biofuel cells. Curr. Opin Biotech 73, 179–187 (2022).

    [25] Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    [26] Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020).

    [27] C. Liu, W. Xu, C. Mei, M. Li, W. Chen et al., A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide-chitin nanofiber hydrogel electrolyte. Adv. Energy Mater. 11, 2003902 (2021).

    [28] M. Liao, J. Wang, L. Ye, H. Sun, P. Li et al., A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. J. Mater. Chem. A 9, 6811–6818 (2021).

    [29] Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301–10308 (2022).

    [30] J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015).

    [31] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    [32] Z. Zuo, Y. Li, Emerging electrochemical energy applications of graphdiyne. Joule 3, 899–907 (2019).

    [33] S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120, 2811–2878 (2020).

    [34] S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 2001239 (2020).

    [35] X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energ. Environ. Sci. 14, 2036–2089 (2021).

    [36] J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021).

    [37] K. Li, H. Teng, Q. Sun, Y. Li, X. Wu et al., Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J. Energy Storage 53, 105094 (2022).

    [38] K. Tian, J. Wang, L. Cao, W. Yang, W. Guo et al., Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 11, 3884 (2020).

    [39] T.H. James, J.M. Snell, A. Weissberger, Oxidation processes. XII.1 the autoxidation of hydroquinone and of the mono-, di- and trimethylhydroquinones. J. Am. Chem. Soc. 60, 2084–2093 (1938).

    [40] J.R. Green, G.E.K. Branch, The influence of hydroxyl ion concentration on the autoxidation of hydroquinone. J. Am. Chem. Soc. 63, 3441–3444 (1941).

    [41] J. Yu, W. Wei, E. Danner, R.K. Ashley, J.N. Israelachvili et al., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7, 588–590 (2011).

    [42] L.R. Radovic, Chemistry and physics of carbon, 3rd edn. (Marcel Dekker Inc, New York, 2001), pp.143–171

    [43] L. Li, Y. Xing, Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J. Electrochem. Soc. 153, A1823–A1828 (2006).

    [44] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    [45] A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 2477–2512 (2004).

    [46] F. Bonino, S. Brutti, P. Reale, B. Scrosati, L. Gherghel et al., A disordered carbon as a novel anode material in lithium-ion cells. Adv. Mater. 17, 743–746 (2005).

    [47] Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji et al., Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-tohydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019).

    [48] T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015).

    [49] Y. Zhao, S. Huang, M. Xia, S. Rehman, S. Mu et al., N-P-O co-doped high performance 3D grapheme prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications. Nano Energy 28, 346–355 (2016).

    Junyan Wang, Wanchun Guo, Kesong Tian, Xinta Li, Xinyu Wang, Panhua Li, Yu Zhang, Bosen Zhang, Biao Zhang, Shuhu Liu, Xueai Li, Zhaopeng Xu, Junjie Xu, Haiyan Wang, Yanglong Hou. Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material[J]. Nano-Micro Letters, 2024, 16(1): 062
    Download Citation