• Photonics Research
  • Vol. 9, Issue 5, 856 (2021)
Di Lin1、*, Joel Carpenter2, Yutong Feng1, Yongmin Jung1, Shaif-ul Alam1, and David J. Richardson1
Author Affiliations
  • 1Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
  • 2School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
  • show less
    DOI: 10.1364/PRJ.412342 Cite this Article Set citation alerts
    Di Lin, Joel Carpenter, Yutong Feng, Yongmin Jung, Shaif-ul Alam, David J. Richardson. High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier[J]. Photonics Research, 2021, 9(5): 856 Copy Citation Text show less
    References

    [1] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [2] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [3] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [4] N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [5] J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu. Optical-vortex laser ablation. Opt. Express, 18, 2144-2151(2010).

    [6] R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, T. Graf. Effects of radial and tangential polarization in laser material processing. Phys. Procedia, 12, 21-30(2011).

    [7] L. J. Wong. Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. Opt. Express, 18, 25035-22501(2010).

    [8] X. A. Hao, C. F. Kuang, T. T. Wang, X. Liu. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt., 12, 115707(2010).

    [9] S. Furhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [10] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 112, 321-327(1994).

    [11] N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White. Generation of optical phase singularities by computer-generated holograms. Opt. Lett., 17, 221-223(1992).

    [12] G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [13] G. Milione, H. I. Sztul, D. A. Nolan, R. R. Alfano. Higher-order Poincare sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [14] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [15] M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett., 98, 201101(2011).

    [16] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [17] A. Longman, R. Fedosejevs. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics. Opt. Express, 25, 17382-17392(2017).

    [18] D. Lin, J. M. O. Daniel, W. A. Clarkson. Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser. Opt. Lett., 39, 3903-3906(2014).

    [19] A. Loescher, J. P. Negel, T. Graf, M. A. Ahmed. Radially polarized emission with 635  W of average power and 2.1  mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier. Opt. Lett., 40, 5758-5761(2015).

    [20] H. Sroor, I. Litvin, D. Naidoo, A. Forbes. Amplification of higher order Poincare sphere beams through Nd:YLF and Nd:YAG crystals. Appl. Phys. B, 125, 49(2019).

    [21] D. Lin, J. M. O. Daniel, M. Gecevicius, M. Beresna, P. G. Kazansky, W. A. Clarkson. Cladding-pumped ytterbium-doped fiber laser with radially polarized output. Opt. Lett., 39, 5359-5361(2014).

    [22] D. Lin, N. Baktash, S. U. Alam, D. J. Richardson. 106  W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam. Opt. Lett., 43, 4957-4960(2018).

    [23] D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, T. F. Krauss. An organic vortex laser. ACS Nano, 12, 2389-2394(2018).

    [24] M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, T. Graf. Radially polarized 3  kW beam from a CO2 laser with an intracavity resonant grating mirror. Opt. Lett., 32, 1824-1826(2007).

    [25] P. S. Salter, M. J. Booth. Adaptive optics in laser processing. Light Sci. Appl., 8, 110(2019).

    [26] S. Ngcobo, I. Litvin, L. Burger, A. Forbes. A digital laser for on-demand laser modes. Nat. Commun., 4, 2289(2013).

    [27] D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, A. Forbes. Controlled generation of higher-order Poincare sphere beams from a laser. Nat. Photonics, 10, 327-333(2016).

    [28] H. Sroor, Y. W. Huang, B. Sephton, D. Naidoo, A. Valles, V. Ginis, C. W. Qiu, A. Ambrosio, F. Capasso, A. Forbes. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [29] N. C. Zambon, P. St-Jean, M. Milicevic, A. Lemaitre, A. Harouri, L. Le Gratiet, O. Bleu, D. D. Solnyshkov, G. Malpuech, I. Sagnes, S. Ravets, A. Amo, J. Bloch. Optically controlling the emission chirality of microlasers. Nat. Photonics, 13, 283-289(2019).

    [30] M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, S. Y. Yu. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun., 5, 4856(2014).

    [31] X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. T. Yu. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [32] P. Miao, Z. F. Zhang, J. B. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, L. Feng. Orbital angular momentum microlaser. Science, 353, 464-467(2016).

    [33] D. Lin, J. Carpenter, Y. T. Feng, S. Jain, Y. M. Jung, Y. J. Feng, M. N. Zervas, D. J. Richardson. Reconfigurable structured light generation in a multicore fibre amplifier. Nat. Commun., 11, 3986(2020).

    [34] B. Ndagano, R. Brüning, M. McLaren, M. Duparré, A. Forbes. Fiber propagation of vector modes. Opt. Express, 23, 17330-17336(2015).

    [35] S. Ramachandran, P. Kristensen, M. F. Yan. Generation and propagation of radially polarized beams in optical fibers. Opt. Lett., 34, 2525-2527(2009).

    [36] R. S. Chen, J. H. Wang, X. Q. Zhang, A. T. Wang, H. Ming, F. Li, D. Chung, Q. W. Zhan. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating. Opt. Lett., 43, 755-758(2018).

    [37] T. Wang, F. Shi, Y. P. Huang, J. X. Wen, Z. Q. Luo, F. F. Pang, T. Y. Wang, X. L. Zeng. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams. Opt. Express, 26, 11850-11858(2018).

    [38] Y. M. Jung, Q. Y. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, S. U. Alam, D. J. Richardson. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber. J. Lightwave Technol., 35, 430-436(2017).

    [39] J. W. Ma, F. Xia, S. Chen, S. H. Li, J. Wang. Amplification of 18 OAM modes in a ring-core erbium-doped fiber with low differential modal gain. Opt. Express, 27, 38087-38097(2019).

    [40] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express, 4, 260-270(2013).

    [41] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [42] R. Di Leonardo, S. Bianchi. Hologram transmission through multi-mode optical fibers. Opt. Express, 19, 247-254(2011).

    [43] T. Cizmar, K. Dholakia. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express, 19, 18871-18884(2011).

    [44] M. Ploschner, T. Tyc, T. Cizmar. Seeing through chaos in multimode fibres. Nat. Photonics, 9, 529-535(2015).

    [45] J. Carpenter, B. J. Eggleton, J. Schroder. Observation of Eisenbud-Wigner-Smith states as principal modes in multimode fibre. Nat. Photonics, 9, 751-758(2015).

    [46] G. Lopez-Galmiche, Z. S. Eznaveh, J. E. Antonio-Lopez, A. M. V. Benitez, J. R. Asomoza, J. J. S. Mondragon, C. Gonnet, P. Sillard, G. Li, A. Schulzgen, C. M. Okonkwo, R. A. Correa. Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control. Opt. Lett., 41, 2588-2591(2016).

    [47] J. Montoya, C. Aleshire, C. Hwang, N. K. Fontaine, A. Velazquez-Benitez, D. H. Martz, T. Y. Fan, D. Ripin. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers. Opt. Express, 24, 3405-3413(2016).

    [48] R. Florentin, V. Kermene, J. Benoist, A. Desfarges-Berthelemot, D. Pagnoux, A. Barthelemy, J. P. Huignard. Shaping the light amplified in a multimode fiber. Light Sci. Appl., 6, e16208(2017).

    [49] D. Flamm, D. Naidoo, C. Schulze, A. Forbes, M. Duparre. Mode analysis with a spatial light modulator as a correlation filter. Opt. Lett., 37, 2478-2480(2012).

    [50] https://www.alglib.net/. https://www.alglib.net/

    [51] M. Pasienski, B. DeMarco. A high-accuracy algorithm for designing arbitrary holographic atom traps. Opt. Express, 16, 2176-2190(2008).

    [52] S. H. Tao, W. X. Yu. Beam shaping of complex amplitude with separate constraints on the output beam. Opt. Express, 23, 1052-1062(2015).

    [53] D. Flamm, C. Schulze, D. Naidoo, S. Schroter, A. Forbes, M. Duparre. All-digital holographic tool for mode excitation and analysis in optical fibers. J. Lightwave Technol., 31, 1023-1032(2013).

    [54] B. Ndagano, H. Sroor, M. McLaren, C. Rosales-Guzman, A. Forbes. Beam quality measure for vector beams. Opt. Lett., 41, 3407-3410(2016).

    CLP Journals

    [1] Zexing Zhao, Hao Chen, Ziming Zhang, Jiatong Li, Fangxiang Zhu, Wei Wan, Fei He, Huifeng Wei, Kangkang Chen, Peiguang Yan. High peak power femtosecond cylindrical vector beams generation in a chirped-pulse amplification laser system[J]. Chinese Optics Letters, 2022, 20(3): 031405

    Di Lin, Joel Carpenter, Yutong Feng, Yongmin Jung, Shaif-ul Alam, David J. Richardson. High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier[J]. Photonics Research, 2021, 9(5): 856
    Download Citation