• Chinese Optics Letters
  • Vol. 19, Issue 7, 073601 (2021)
Linshan Sun1, Bo Zhao1, Jiaqi Yuan1, Yanrong Zhang1, Ming Kang2, and Jing Chen1、3、*
Author Affiliations
  • 1MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
  • 2College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.3788/COL202119.073601 Cite this Article Set citation alerts
    Linshan Sun, Bo Zhao, Jiaqi Yuan, Yanrong Zhang, Ming Kang, Jing Chen. Optical resonance in inhomogeneous parity-time symmetric systems[J]. Chinese Optics Letters, 2021, 19(7): 073601 Copy Citation Text show less
    References

    [1] C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 70, 947(2007).

    [2] S. Longhi. PT-symmetric laser absorber. Phys. Rev. A, 82, 031801(R)(2010).

    [3] A. A. Zyablovsky, A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, A. A. Lisyansky. Causality and phase transitions in PT-symmetric optical systems. Phys. Rev. A, 89, 033808(2014).

    [4] M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, S. Zhang. Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. Phys. Rev. Lett., 113, 093901(2014).

    [5] J. Gear, F. Liu, S. T. Chu, S. Rotter, J. Li. Parity-time symmetry from stacking purely dielectric and magnetic slabs. Phys. Rev. A, 91, 033825(2015).

    [6] W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. Liu, J. Chen. Unidirectional excitation of radiative-loss-free surface plasmon polaritons in PT-symmetric systems. Phys. Rev. Lett., 119, 077401(2017).

    [7] S. Assawaworrarit, X. Yu, S. Fan. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. Nature, 546, 387(2017).

    [8] H. Shen, B. Zhen, L. Fu. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 120, 146402(2018).

    [9] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity-time symmetry. Nat. Photo., 11, 752(2017).

    [10] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11(2018).

    [11] W. D. Heiss, H. L. Harney. The chirality of exceptional points. Eur. Phys. J. D, 17, 149(2001).

    [12] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61(2015).

    [13] Z. Lin, A. Pick, M. Loncar, A. W. Rodriguez. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett., 117, 107402(2016).

    [14] M. Kang, J. Chen, Y. D. Chong. Chiral exceptional points in metasurfaces. Phys. Rev. A, 94, 033834(2016).

    [15] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187(2017).

    [16] W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhanced sensing in an optical microcavity. Nature, 548, 192(2017).

    [17] T. Goldzak, A. A. Mailybaev, N. Moiseyev. Light stops at exceptional points. Phys. Rev. Lett., 120, 013901(2018).

    [18] S. A. H. Gangaraj, F. Monticone. Topological waveguiding near an exceptional point: defect-immune, slow-light, and loss-immune propagation. Phys. Rev. Lett., 121, 093901(2018).

    [19] M. A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [20] Y. Li, C. Argyropoulos. Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides. Phys. Rev. B, 99, 075413(2019).

    [21] H. Z. Chen, T. Liu, H. Y. Luan, R. J. Liu, X. Y. Wang, X. F. Zhu, Y. B. Li, Z. M. Gu, S. J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu, R. M. Ma. Revealing the missing dimension at an exceptional point. Nat. Phys., 16, 571(2020).

    [22] J. B. Khurgin, R. S. Tucker. Slow Light: Science and Applications(2009).

    [23] J. B. Khurgin. Slow light in various media: a tutorial. Adv. Opt. Photon., 2, 287(2010).

    [24] L. Singh, W. Zhang. Advancements in high refractive index media: from quantum coherence in atomic systems to deep sub-wavelength coupling in metamaterials. Chin. Opt. Lett., 18, 062401(2020).

    [25] A. Pick, B. Zhen, O. D. Miller, C. W. Hsu, F. Hernandez, A. W. Rodriguez, M. Soljacic, S. G. Johnson. General theory of spontaneous emission near exceptional points. Opt. Express, 25, 12325(2017).

    [26] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 93, 033809(2016).

    [27] J. Zhang, B. Peng, S. K. Ozdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y. X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photon., 12, 479(2018).

    [28] Z. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, L. Feng. Tunable topological charge vortex microlaser. Science, 368, 760(2020).

    [29] H. Hodaei, M. Ali Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 346, 975(2014).

    [30] B. Longstaff, E. M. Graefe. Nonadiabatic transitions through exceptional points in the band structure of a PT-symmetric lattice. Phys. Rev. A, 100, 052119(2019).

    [31] M. V. Berry, R. Uzdin. Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon. J. Phys. A, 44, 435303(2011).

    [32] E. M. Graefe, A. A. Mailybaev, N. Moiseyev. Breakdown of adiabatic transfer of light in waveguides in the presence of absorption. Phys. Rev. A, 88, 033842(2013).

    [33] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter, P. Rabl. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A, 92, 052124(2015).

    [34] Y. Jia, F. Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review. Chin. Opt. Lett., 17, 012302(2019).

    Data from CrossRef

    [1] Zhonghua Gong, Hao Zhang, Miaosen Fan, Wei Lin, Bo Liu. Design of a mid-infrared single-mode laser based on parity-time symmetry breaking in air-clad hollow-core ZBLAN fiber micro-resonator. Journal of Optics, 23, 115005(2021).

    Linshan Sun, Bo Zhao, Jiaqi Yuan, Yanrong Zhang, Ming Kang, Jing Chen. Optical resonance in inhomogeneous parity-time symmetric systems[J]. Chinese Optics Letters, 2021, 19(7): 073601
    Download Citation